积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)数据库(3)MySQL(3)综合其他(2)人工智能(2)Kubernetes(2)RocketMQ(2)前端开发(1)系统运维(1)Linux(1)

语言

全部中文(简体)(12)

格式

全部PDF文档 PDF(10)PPT文档 PPT(2)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 数据库
  • MySQL
  • 综合其他
  • 人工智能
  • Kubernetes
  • RocketMQ
  • 前端开发
  • 系统运维
  • Linux
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    • 基于深度学习的行业趋势预测 模型,支持企业动态适应市场 变化。 • 数据驱动的人工智能模型,实 现专业预测和战略规划。 3.复杂任务的 全流程自动化 • 融合强化学习算法,自动识别 高风险场景并提供相应建议。 • 深入分析数据,优化决策流程, 确保全面覆盖核心业务环节。 • 自动识别任务的基本要求和限制 条件。 • 使用强化学习算法跟踪任务的状 态变化(如预算使用、产品数量 使任务执行效果不断增强。  智能法律顾问 A1:自动读取合同,分析潜在法律风险,生成修改建议,并与企业法务系统对接完 成合规审查。  企业 AI CEO:结合市场数据、财务数据,自动生成年度战略规划,并动态调整业务目标。  智能招聘 A1:筛选简历、面试候选人(语音/视频 AI 面试)、自动发送 offer,并完成 HR 系统录入。 增强知识图谱:多维解释,溯源路径  金融风险评估与决策支持:
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    commonmq v1.0 = Notify + RocketMQ + B2B 个性化需求 为 B2B 应用提供消息服务 3 与业术语  Producer 消息生产者,负责产生消息,一般由业务系统负责产生消息。  Consumer 消息消费者,负责消费消息,一般是后台系统负责异步消费。  Push Consumer Consumer 的一种,应用通常吐 Consumer 普通顺序消息 顺序消息的一种,正常情冴下可以保证完全的顺序消息,但是一旦収生通信异常,Broker 重启,由亍队列 总数収生发化,哈希叏模后定位的队列会发化,产生短暂的消息顺序丌一致。 如果业务能容忍在集群异常情冴(如某个 Broker 宕机戒者重启)下,消息短暂的乱序,使用普通顺序方 式比较合适。  严格顺序消息 顺序消息的一种,无论正常异常情冴都能保证顺序,但是牺牲了分布式 绝大部分的优兇级问题,但是对业务的优兇级精确性做了妥协。 2) 严格的优兇级,优兇级用整数表示,例如 0 ~ 65535,返种优兇级问题一般使用丌同 topic 解决就非常丌合 项目开源主页:https://github.com/alibaba/RocketMQ 5 适。如果要让 MQ 解决此问题,会对 MQ 的性能造成非常大的影响。返里要确保一点,业务上是否确实需 要返种严格的
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    比如购买流程(1)下单(2)支付(3)支付成功,这三个消息需要根据 特定规则将这个三个消息按顺序发送到一个 queue 如何实现把顺序消息发送到同一个 queue: 一般消息是通过轮询所有队列发送的,顺序消息可以根据业务比如说订单号 orderId 相同的消息发送到同一个队列, 或者同一用户 userId 发送到同一队列等等 messageQueueList [orderId%messageQueueList LocalTransactionExecuter , 处 理 本 地 事 物 逻 辑 返 回 处 理 的 事 物 状 态 LocalTransactionState 3) 二阶段,处理完本地事物中业务得到事物状态, 根据 offset 查找到 commitLog 中 的 prepared 消息,设置消息状态 commitType 或者 rollbackType , 让后将信息添加到 commitLog consumer 通过长轮询拉取消息后回调 MessageListener 接口实现完成消费, 应用系统只要 MessageListener 完成业务逻辑即可 2. Pull 方式:完全由业务系统去控制,定时拉取消息,指定队列消费等等, 当然这里需要 业务系统去根据自己的业务需求去实现 下面介绍默认以 push 方式为主, 因为绝大多数是由 push 消费方式来使用 rocketmq 的。
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
  • pdf文档 2022 Apache Ozone 的最近进展和实践分享

    HIVE/IMPALA/SPARK KAFKA / FLINK 计算 OTHER WORKLOADS OTHER WORKLOADS X • 可⽤于承载实时和批处理的业务 • 扩展性提升 • ⽆需改变或改造业务应⽤代码 • 降低控制平⾯的节点数和服务依赖 业务价值 • 降低⼤规模集群的运维难度 • 可通过HDFS API和Distcp进⾏快速迁移 • 降低系统恢复时间 • 尽可能的减少NN Apache Ozone – 使⽤场景 #2 • 可以快速的对接已适配S3 接⼝的应⽤ • 减少数据在多个平台间的迁移 • 使⽤单⼀的API协议来应对混合云架构 业务价值 • 集约化的⼀套存储来⾯向不同的业务负载 • 更易于运维的控制⾯ • 只需要⼀个运维团队⽽不是多个 运维价值 OZONE STORAGE AI/ML HIVE/IMPALA/ SPARK KAFKA
    0 码力 | 35 页 | 2.57 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品 业务实时性要求不是很高,完全可以采用这种弱一致性的设 计架构模式。 中间一致性 如果既不是很强的一致性又不是很弱的一致性,那 么我们就采取中间的策略,就是在同机房再部署一个 S1(R) 尽量不用触发器,特别是在大数据表上 应用优化 应用优化 编写高效的 编写高效的 SQL SQL (三) (三)  更新触发器如果不是所有情况下都需要触发,应根据业务需要加 更新触发器如果不是所有情况下都需要触发,应根据业务需要加 上必要判断条件 上必要判断条件  使用 使用 union all union all 操作代替 操作代替
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • pdf文档 基于go和flutter的实时通信/视频直播解决方案 段维伟

    分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块 • SFU 节点 (用于转发webrtc 流,与biz模块配合创建视频会议系 统) •
    0 码力 | 38 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Kubernetes Operator 实践 - MySQL容器化

    技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx (Load Balancer) Kafka Zookeeper etcd AppEngine(Resin/Tomcat…)
    0 码力 | 42 页 | 4.77 MB | 1 年前
    3
  • pdf文档 MySQL高可用 - 多种方案

    高可用一直是 mysql 业界不断讨论的热点问题,其中涉及的东西比较多,可 供选择的方案也相当多,面对这么多的方案,我们应该如何选择适合自己公司的 mysql 高可用方案呢,我觉得首先我们需要了解的自己公司的业务,了解在线系统中那些东西 会影响高可用,以及了解各个高可用方案比较适合哪些场景,通过这些比对应该不难找 出适合自己公司的高可用 mysql 方案。 经常有网友问 mysql 高可用如何实现,希望得到一些能实际使用的可验证的高可用 立即接管,其他的从服务器能自动切换,不用人工干预。 缺点:至少三个节点,对主机的数量有要求,需要实现读写分离,对程序来说是个 挑战。 6.3 方案架构图 6.4 适用场景 MMM 的适用场景为数据库访问量大,业务增长快,并且能实现读写分离的场景。 6.5 方案实战 6.5.1 实战环境介绍 实战环境服务器列表: 服务器 主机名 ip 地址 Serverid 系统 Mysql Monitor
    0 码力 | 31 页 | 874.28 KB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    业绩回顾部分旨在清晰、全面地展示 过去一年的工作成绩。提示语设计应 侧重于以下要点: • 成果展示 • 结构清晰 • 具体事例 维度 提示语示例 要求 成果概述 请总结过去一年中 的主要工作成果, 重点展示对业务的 推动作用。 业绩突出项:[列出关键业绩指 标,如销售额、客户增长率、项 目完成情况等]成果分析:[分析 这些成果带来的具体影响,如提 升效率、拓展市场等] 数据支撑 请提供支撑业绩的 具体数据,并通过 个人荣 誉 请列举个人在过 去一年中获得的 奖项、荣誉或表 彰,突出个人贡 献。 荣誉奖项:[列出获得的奖项或 特别表彰,如“最佳员工奖”“创 新贡献奖”等]个人影响:[通过个 人努力,推动了业务或团队的 成长,取得了哪些成果] 维度 提示语示例 要求 年度目 标 请设定明年 的主要工作 目标,并确 保目标具体、 可度量。 目标设定:[明确具体的工作目标, 如“实现XX销售额”“拓展XX客户”等]
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • ppt文档 GPU Resource Management On JDOS

    用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案
    0 码力 | 11 页 | 13.40 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研RocketMQ开发指南消息中间中间件消息中间件原理解析ApacheOzone最近进展实践分享MySQLgocngoflutterrtcKubernetesOperator高可用清华华大大学入门精通GPUJDOS
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩