积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(27)C++(19)Rust(7)系统运维(2)DevOps(2)数据库(1)Go(1)MySQL(1)

语言

全部中文(简体)(29)中文(简体)(1)

格式

全部PPT文档 PPT(30)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 30 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • Go
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    应用”项目,斩获“科学技术奖科技进步一等奖”,这也是国内电子信 息领域的最高奖项。 该奖项由数十名院士评审,历经三轮,从三百余个申报项目中遴选 而出。由院士等组成的科技成果鉴定委员会认为:“该成果技术复杂 度高,研制难度大,创新性强,项目成果整体达到国际先进水平, 其中异质图建模与表示学习技术和超大规模图学习系统处于国际领 先水平。” 以终为始,以行为知,这一项目从图计算所面临的挑战出发,解决了大规模图数据所产生 图数据中进行知识 发现的重要需求。最终获得国内外授权发明专利 43 项, CCF -A 类论文 51 篇,获得 2 次国际竞赛冠军,参与了 2 项图计算相关标准制定。 AtlasGraph 架构及实现 图技术简介 Takeway “ 世界是复杂关系的总和”—— 一张典型的知识图谱 电话 / 同通讯录 / 绑定同账户 /... Mac 地址 /IP 地址 /wifi... 亲属 亲属 / 同事 / 一致行动 人 / 担保同地址 / 同设备登 陆 /... 已签署 / 过期签署 / 意向签署 /... 已签署 / 过期签署 / 意向签署 /... 董监高 / 就职 / 实际控制人 拥有 / 抵押 / 质 押 股权 / 资管计划 / 资金往来 / 担 保 / 借贷 / 集团 / 控股 / 上下 游 ... 父子 / 组合 / 继承 转账 / 大额转账
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN - 统一产研运管理平面 重视开发者体验,工程师不再做脏活累活 传统 DevOps 体系 Zadig 云原生 DevOps 平台 高人效 低人效 低人效 / 低质量 / 低效率 / 高成 本: 人淹没在系统的海洋里,无数平台手工切换 高人效 / 高质量 / 高效率 / 低成 本: 人在系统之外 / 上,复杂性下沉到单一平台 希望 工程师不再花时间在开发写代码之外的脏活累活,比如服务部署、找环境,服务编排等 开发者常处于 今天发版、明早升级 嗷嗷待哺状态 Zadig 优势、使用场景、解决问题域 Zadig 解决问题域 Zadig 云原生开放性:极简、 0 负担接入 Zadig 业务架构 Zadig 系统架构 1 Zadig 行业方案 对比分析 职能 传统 DevOps 方案 ZadigX 云原生 DevOps 方案 降本提效 组织能力提升 业务负责人 研发不透明,规划凭感觉:
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    可见数据量较小时,实际带宽甚至超过了 理论带宽极限 42672 MB/s ! • 而数据量足够大时, 才回落到正常的带宽 。 • 这是为什么? CPU 内部的高速缓存 • 原来 CPU 的厂商早就意识到了内存延迟高,读写效率低 下的问题。因此他们在 CPU 内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 CPU 读取一个地址时: • 缓存会查找和该地址匹配的条目。如果找到,则给 CPU 返 回缓存中的数据。如果找不到,则向主内存发送请求,等读 取到该地址的数据,就创建一个新条目。 • 在 x86 架构中每个条目的存储 64 字节的数据,这个条目 又称之为缓存行( cacheline )。 • 当访问 0x0048~0x0050 这 4 个字节时,实际会导致 0x0040~0x0080 的 页对齐的重要性 • 为什么要 4KB ?原来现在操作系统管理内存是用分页 ( page ),程序的内存是一页一页贴在地址空间中的, 有些地方可能不可访问,或者还没有分配,则把这个页设 为不可用状态,访问他就会出错,进入内核模式。 • 因此硬件出于安全,预取不能跨越页边界,否则可能会触 发不必要的 page fault 。所以我们选用页的大小,因为本 来就不能跨页顺序预取,所以被我们切断掉也无所谓。
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 Rust分布式账务系统 - 胡宇

    办公地点 19 1300+ 员工 提供高效,低成本的数字银行服务 关于我们: Airwallex 从设计架构到实现细节 项目介绍 分布式账务系统 Fintech 互联网 正确性 bug= 资损 bug 不可怕,快速迭代 可靠性 丢数据 = 资损 允许数据丢失 性能 超低延迟 + 高吞吐 超高吞吐 交易日志 审计,监管 调试使用 分布式账务系统 Fintech 领域中的软件与互联网软件的不同 支付处理: ● 转账 ● 冻资 / 解资 ● 账户限额 ● 批处理事务 正确性:无双花或少付 审计监管:交易日志不可篡改,交易历史可回溯 条件事务:根据一定的条件决定事务执行与否 高可用:在部分节点失效的情况下,依旧可以提供正确的 服务 超低延迟:实时交易,超低响应延迟 水平扩展性:利用分布式事务实现钱包集群的的水平扩 展,应对高达 100 万 TPS 的流量 可演化性:业务逻辑与底层 稳定的底层 API ● 灵活的顶层 API ● 树状结构 ● 聚合查询 ● 正确性:内存安全,线程安全 ● 可靠性: Raft 共识算法 raft-rs ● 高性能:关键路径无锁单线程 顶层架构 ● Gateway 路由层 ○ 业务 API 到底层 API 的翻 译 ○ 产生转账计划 ● Marker 事务层 ○ 使用业务 id 进行路由 ○ 执行转账计划 ○ 分发账户变动请求
    0 码力 | 27 页 | 12.60 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事  MySQL MySQL 基本介绍 基本介绍  MySQL MySQL 优化方式 优化方式  MySQL MySQL 技巧分享 技巧分享  Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 拥有自己独立的缓冲池,能够缓存数据和索引 拥有自己独立的缓冲池,能够缓存数据和索引 MySQL 架构设计—应用架构 强一致性 对读一致性的权衡,如果是对读写实时性要求非常高的话, 就将读写都放在 M1 上面, M2 只是作为 standby 。 比如,订单处理流程,那么对读需要强一致性,实时写实 时读,类似种涉及交易的或者动态实时报表统计的都要采 用这种架构模式 弱一致性 如果是弱一致性的话,可以通过在 M2 上面分担一些读压力 上面分担一些读压力 和流量,比如一些报表的读取以及静态配置数据的读取模块 都可以放到 M2 上面。比如月统计报表,比如首页推荐商品 业务实时性要求不是很高,完全可以采用这种弱一致性的设 计架构模式。 中间一致性 如果既不是很强的一致性又不是很弱的一致性,那 么我们就采取中间的策略,就是在同机房再部署一个 S1(R) ,作为备库,提供读取服务,减少 M1(WR) 的 压力,而另外一个
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    ,从而实现一个函数针对 GPU 和 CPU 生成两份源码级不同的 代码。 __CUDA_ARCH__ 是个版本号 • 其实 __CUDA_ARCH__ 是一个整数,表 示当前编译所针对的 GPU 的架构版本号 是多少。这里是 520 表示版本号是 5.2.0 ,最后一位始终是 0 不用管,我们 通常简称他的版本号为 52 就行了。 • 这个版本号是编译时指定的版本,不是运 行时检测到的版本。编译器默认就是最老 com/cuda/cuda-compiler-driver-nvcc/index.html#extended-notation 针对不同的架构,使用不同的代码 通过 CMake 设置架构版本号 • 可以用 CMAKE_CUDA_ARCHITECTURES 这个变量 ,设置要针对哪个架构生成 GPU 指令码。 • 小彭老师的显卡是 RTX2080 ,他的版本号是 75 ,因 此最适合他用的指令码版本是 75 • 不过英伟达的架构版本都是向前兼容的,即版本号为 75 的 RTX2080 也可以运行版本号为 52 的指令码,虽然 不够优化,但是至少能用。也就是要求:编译期指定的 版本 ≤ 运行时显卡的版本。 CMAKE_CUDA_ARCHITECTURES 会自动转换成 --gpu-code 等编 译 flag 版本号不要太新了 • 比如这里设置了 RTX3000 系列的架构版 本号 86
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 CeresDB Rust 生产实践 任春韶

    OpenTSDB 协议  内存时序数据库  存储计算分离架构  分级存储  永久代  CeresDB 开源 2022.6 2023.3  开源版本 CeresDB 开始研 发 2023.6  1.2.2 版本发布  优化了写入性能  优化了分布式方案 CeresDB – 目标 解决时间线高基数问题 • 能高效处理好 APM 型时序数据 • 同时能高效处理好高基数时间线场景 同时能高效处理好高基数时间线场景 提供原生分布式方案 • 大规模部署 • 提供高可用、高可靠的服务 • 支持水平扩容 • 支持高效的分布式查询 - Tokio Preemption - Future Cancellation Rust 生产实践 生产实践 – Tokio 为什么使用 Tokio ? 1. 业界使用最广泛,测试齐全。 2. Tokio 支持 async/await blocking mutex 比较好。 生产实践 – Mixed workload Write Read Compact Runtimes 问题: CeresDB 监控写 OSS 耗时高, OSS 监控看耗时低。 生产实践 – Mixed workload runtime.spawn(task0) runtime.spawn(task1) runtime.spawn(task2)
    0 码力 | 22 页 | 6.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践

    Helper ),然后一个声明该类 的全局变量( helper ),就可以保证: • 1. 该类的构造函数一定在 main 之前执行 • 2. 该类的解构函数一定在 main 之后执行 • 该技巧可用于在程序退出时删除某些文件之类 。 • 这就是小彭老师的静态初始化 (static-init) 大法 。 静态初始化用于批量注册函数 • 我们可以定义一个全局的函数表(右图中的 functab 退出时也不会调用解构函数。 • 并且即使多个线程同时调用了 func ,这个变量的 初始化依然保证是原子的( C++11 起)。 • 这就是函数静态初始化 (func-static-init) 大法。 函数静态初始化可用于“懒汉单例模式” • 如右图。 • getMyClassInstance() 会在第一次调用时创 建 MyClass 对象,并返回指向他的引用。 • 根据 C++ 函数静态变量初始化的规则,之后
    0 码力 | 54 页 | 3.94 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    这就是,无分支优化。 • setle 指令是单独一条指令,不需要跳转。 比起需要跳转的 jle 指令,他避免了 CPU 预测分支和预测失败带来的额外开销。 条件跳转指令 vs 无分支指令 • x86 指令集架构中,条件跳转指令有 j 开头的一系列,无分支指令有 set 系列和 cmov 系列。 • jle .L1 上一次比较结果为小于等于时,程序跳转到 .L1 处,否则不跳转继续往下执行。 • setle char 一样只占据 1 字节( al 寄存器就 1 字节) • 而 C 语言可以自动把 bool 转换成 int 类型( movzx 把 1 字节的 al 转换成 4 字节的 eax ,零扩展:高 3 字节 填充零) • 返回类型 int 占据 4 字节( eax 寄存器就是 4 字节的) • 返回值都放 eax 寄存器(刚刚算得的就在 eax ,直接返 回) 无分支优化:从语法角度分析
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    (张心欣犯过的错) 利用多线程安全的 concurrent_vector 动态追加数据 基本没有加速,我猜想 concurrent_vector 内部可能 用了简单粗暴的互斥量,只保证了安全,并不保证高 效 加速比: 1.32 倍 并行筛选 2 先推到线程局部( thread-local )的 vector 最后一次性推入到 concurrent_vector 可以避免频繁在 concurrent_vector
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
游人RustCCAtlasGraphZadig面向开发开发者原生DevOps平台C++高性性能高性能并行编程优化课件07胡宇rust分布布式分布式账务系统MySQL08任春韶2023RustChinaConfceresdb生产实践生产实践06
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩