积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(8)C++(6)Rust(2)数据库(1)MySQL(1)

语言

全部中文(简体)(8)中文(简体)(1)

格式

全部PPT文档 PPT(9)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 9 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 数据库
  • MySQL
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 14 C++ 标准库系列课 - 你所不知道的 set 容器

    会自动给其中的 元素从小到大排序,而 vector 会保持插入时的顺序。 • 区别 2 : set 会把重复的元素 去除,只保留一个,即去重。 • 区别 3 : vector 中的元素在内 存中是连续的,可以高效地按 索引随机访问, set 则不行。 • 区别 4 : set 中的元素可以高 效地按值查找,而 vector 则 低效。 set 的排序: string 会按“字典序”来排 会按“字典序”来排 • set 会从小到大排序,对 int 来 说就是数值的大小比较。那么对 字符串类型 string 要怎么排序 呢? • 其实 string 类定义了运算符重 载 < ,他会按字典序比较两个 字符串。所谓字典序就是优先比 较两者第一个字符(按 ASCII 码比较),如果相等则继续比较 下一个,不相等则直接以这个比 较的结果返回。如果比到末尾都 相等且字符串长度一样,则视为 相等。 警告:千万别用 set 做字符串集合。 这样只会按字符串指针的地址去判断相等, 而不是所指向字符串的内容。 set 的排序:自定义排序函数 • set 作为模板类,其实有两 个模板参数: set • 第一个 T 是容器内元素的类 型,例如 int 或 string 等。 • 第二个 CompT 定义了你想 要的比较函子, set 内部会 调用这个函数来决定怎么排
    0 码力 | 83 页 | 10.23 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    的元素类型是…… • set::value_type 是 V 。 • map::value_type 是 pair 。 • 这很合理,虽然只针对 K 排序,但实际上 K 和 V 是捆绑在一起的。 • pair 就是这样一个结构,前 K 后 V ,在内存中也是紧挨着。 k k k k k k k k k k k k v const_iterator 。 • 但是 map 只针对 K 进行排序, V 又不参与排序,完全可以随意改变。因此 C++ 之父 允许 map 的迭代器不 const ,而是让 pair 中的 K 单独加上 const 修饰, V 不加 const 。这样既能防止用户不小心修改了 K ,也能允许随意自由修改不参与排序的 V 。 k k k k k k k k k k k 是中根遍历,先左子节点,然后根节点,最后右子节点。 • 为什么是中根遍历?因为刚刚说了二叉排序树的规则是:左子节点<父节点<右子节点。 • 这刚好是中根遍历的顺序,左中右。所以迭代器的 ++ 方向刚好是 K 越来越大的方向。 • 结论:遍历时,总是会按 K 从小到大的顺序。 k k k k k k v v v v v v 小 大 第三章:二叉排序树 高效的查找离不开我 高效的查找离不开我 回顾 set
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 Rust与算法 - 谢波

    在操作系统,数据库,各种框架和工具上应用范围 广 写作动机 当情况不明时,抱着一个纯粹的目标干事就行了,其他 的留给时间检验。不懂就学,技术写作更像一种共创, 要反复总结和修改 ( 费曼学习法 ) 。 写作本书给我的启示 基础、排序、查找、树、图 代码框、颜色、图片绘制均由 Latex 完成 可参考点 为什么 为什么讲这个话题? 为什么要讲数据结构和算法两部分? 算法相关知识 算法相关知识 • 抽象数据类型 • Option ? 链表 链接可能为空 多种迭代 Vec 借助链表 随机插入 插入新的 Vec Rust 实现算法 • 蒂姆排序 • 字典树 • 图 Rust 实现算 法 蒂姆排序 什么是蒂姆排序? 蒂姆排序 位运算 高低位排序区别处理 https://github.com/QMHTMY/RustBook/blob/main/publication/code/ch
    0 码力 | 28 页 | 3.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    ind 只有 0 和 1 ,应该大有优化空间) 第 8 章:分治与排序 斐波那契数列第 n 项 斐波那契数列第 n 项:并行 tbb::task_group 的封装: tbb::parallel_invoke 任务划分得够细时,转为串行,缓解调度负担( scheduling overhead ) 标准库提供的排序 快速排序 std::hash 用于从输入生成随机数,输入不变则结果不 变。 变。 随机枢轴的位置防止数据已经有序造成最坏的 O(n²) 。 并行快速排序 (和刚刚手写的快速排序)加速比: 2.05 倍 改进:数据足够小时,开始用标准库串行的排序 (和标准库串行的 std::sort )加速比: 4.59 倍 封装好了: tbb::parallel_sort (和标准库串行的 std::sort )加速比: 4.80 倍 重新认识改进的并行缩并 • 其实之前提到“改进后的并行缩并”,也是一
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 线 (pipeline) 。流水线的目的是能把原本 串行的一系列指令并行化。为了理解为什
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 谈谈MYSQL那点事

    不打开 ) 128M 查询缓存区的最大长度,按照当前需求,一 倍一倍增加,本选项比较重要 sort_buffer_size 512K 128M 每个线程的排序缓存大小,一般按照内存可 以设置为 2M 以上,推荐是 16M ,该选项对 排序 order by , group by 起作用 record_buffer 128K 64M 每个进行一个顺序扫描的线程为其扫描的每 张表分配这个大小的一个缓冲区,可以设置
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • ppt文档 Borsh 安全高效的二进制序列化

    整数采用低字节序( little endian) 存储 • 对于动态长度的集合,先用一个 u32 存储集合 size • 对于原本无序的集合(如 hashmap ),存储时使用 key 的字典序排序 Borsh 规范 let a: [u32; 5] = [1, 2, 3, 4, 5]; let a = vec![1, 2, 3, 4, 5]; let solar_distance = HashMap::from([
    0 码力 | 21 页 | 3.35 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    存储,一个 char 可以存储 8 个 bit 用 map 来存储 读取:如果不存在,则读到 0 写入:如果不存在,则创建该表项 用 unordered_map 来存储 map 基于红黑树,会按照键值排序,需要键值具有 operator< 重载,复杂度 O(logn) C++11 新增的 unordered_map 基于哈希表,不保证顺序但更高效,需要键值能被哈希,复杂度 O(1) 用 unordered_map
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    字符串应用实战(作业) 第 10 章 课后作业 • 输入是一个文本文件 a.txt : • 1 xxx • 4 yyyyyyy • 3 zzzz • 2 wwwww • 要求按照前面的数字排序,输 出到另一个文本文件 b.txt : • 1 xxx • 2 wwwww • 3 zzzz • 4 yyyyyyy 非常感谢相依同学提供了这道有趣的题目:
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件1417谢波2023RustChinaConf大会Rust算法Shieber06MySQLBorsh1015
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩