陈东 - 利用Rust重塑移动应用开发-230618第三届中国 Rust 开发者大会 利用 Rust 重塑移动应用开发 陈东 Aaron Chen CTO AccountLabs Rust China Conf 2023 2023 移动应用开发有那些选择? 1. Native 2. Flutter 3. React Native ? 利用 Rust 重塑移动应用开发 React Native is an open-source - Rendering Engine 利用 Rust 重塑移动应用开发 跨平台开发的优势和局限性 Pros: - Fast - Single Codebase - Third-party support (Javascript better than Dart) 利用 Rust 重塑移动应用开发 跨平台开发的优势和局 限性 Cons: - Performance - Native - Existing Codebase 跨平台开发到到底 应该跨什么? UI or Logic ? 利用 Rust 重塑移动应用开发 Rust 在移动端应 用的价值 Rust is the only advanced choice for cross platform development. 利用 Rust 重塑移动应用开发 Rust 的特点 Why Rust? - Cross0 码力 | 22 页 | 2.10 MB | 1 年前3
Zadig 面向开发者的云原生 DevOps 平台面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN 灰度上线 xN 监控 / 告警 xN 版本归档 xN 交付追踪 xN 数据度量 xN 服务、工单管理 事件、缺陷管理 想 法 用 户 运行阶段 需求阶段 研发阶段 现代软件交付挑战:开发 5 分钟,上线 2 小时 服务一:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 服务二:设计 | 测试 | 发布 特点: ● 重复流程自动化 ● 边开发、边验证 ● 服务全生命周期而非只关注代码 ● 每天多次提交提早验证 Zadig 采用「云原生产品级交付」设计理念 数字化产研协同 • 环境 - 统一开发者协作平面 • 工作流 - 统一交付变更通道 • 异构支持 - 统一产研运管理平面 重视开发者体验,工程师不再做脏活累活 传统 DevOps 体系 Zadig0 码力 | 59 页 | 81.43 MB | 1 年前3
新一代分布式高性能图数据库的构建 - 沈游人MPP Massively Parallel Processing 架构,大规模集群 分布式存储及并行计 算, Shared Nothing 模式支 持存储计算分离 高性能 基于 Rust 开发的分布式存储引 擎及图计算引擎,精细的内存 管理设计,内置索引系统,支 持毫秒级的并发查询响应速度 易用 AQL(Atlas Graph Query Language) ,类 SQL 的图查询 Projection Filter Stage Stage 物理执行计划 01 02 03 将不同的执行阶段推送到对应的存储 引擎,减少网络传输和内存压力 实际执行时,执行器等待流数据,处 理后将数据推送到下一个执行器 切分执行计划,将执行计划划分成不 同的执行阶段 内存缓存结构:加速图数据查询 • 由于图数据的查询通常是 IO 密集型,且访问的数据随机又分散,拥有内存缓存能起到很 特殊设计的高性能图算子库 丰富的算法库 • 内置多种 20+ 个 GNN 算法 • 支持同构图 / 异构图 / 属性图 客户的信任 • 上线某银行反欺诈场景 业务效果提升 10%+ 灵活易用的开发平台 • AtlasML Python Library • 集成 Jupyter Notebook 超参数自动优化 • 支持超参数自动调优,解放算 法科学家生产力,避免繁杂的 手动调参0 码力 | 38 页 | 24.68 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起CMake 学起 by 彭于斌( @archibate ) 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 关于作者(续) • 我是 Taichi Blend 的作者( https://github.com/taichi-dev/taichi_blend ) 关于作者(再续) • 主导 Zeno 节点仿真框架的开发( https://github.com/zenustech/zeno ) 什么是编译器 • 编译器,是一个根据源代码生成机器码的程序。 • > g++ main.cpp -o a.out • 。然后用一个小程序,自动在编译前把引号 内的文件名 hello.h 的内容插入到记号所在的位置,这样不就只用编辑 hello.h 一次了嘛 ~ • 后来,这个编译前替换的步骤逐渐变成编译器的了一部分,称为预处理阶段, #define 定 义的宏也是这个阶段处理的。 • 此外,在实现的文件 hello.cpp 中导入声明的文件 hello.h 是个好习惯,可以保证当 hello.cpp 被修改时,比如改成 hello(int)0 码力 | 32 页 | 11.40 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南Qt5Config.cmake 文件包含所有相关信息(类似于 nodejs 的 package.json ),比你单独的一个个去找动态库文件要灵活的多。 • 包配置文件由第三方库的作者( Qt 的开发团队)提供,在这个库安装时( Qt 的安装程序 或 apt install 等)会自动放到 /usr/lib/cmake/XXX/XXXConfig.cmake 这个路径(其中 XXX 是包名),供 g.cmake ,那 么请你设置变量 Qt5_DIR 为 D:/Qt5.12.1/msvc2017/lib/cmake/Qt5 。有三种设置方法: • (1) 单次有效。在 configure 阶段,可以从命令行设置(注意要加引号): • cmake -B build -DQt5_DIR=”D:/Qt5.12.1/msvc2017/lib/cmake/Qt5” • (2) 全局启用。右键“我的电脑” 1/lib/cmake/Qt5/Qt5Config.cmake ,那么请你设 置变量 Qt5_DIR 为 /opt/Qt5.12.1/lib/cmake/Qt5 。有三种设置方法: • (1) 单次有效。在 configure 阶段,可以从命令行设置: • cmake -B build -DQt5_DIR=”/opt/Qt5.12.1/lib/cmake/Qt5” • (2) 全局启用。修改你的 ~/.bashrc 文件添加环境变量:0 码力 | 56 页 | 6.87 MB | 1 年前3
Rust与算法 - 谢波第三届中国 Rust 开发者大会 Rust 与 算法 谢波 …………………………………………………………………………. …………………………………………………………………………… ...... …………………………………………………………………………… ……………… …………………………………………………………………………… ………………………. …………………………………………………………………………… 结算及大数据系统研发工程师 疫情下的明智选择 / 个人项目实践 学习中总结探索 2015 年发布,很多人近几年才知道 Rust , Rust 中国 大会也才第三届,期待 Rust 中国大会第十届 Rust 处于起步阶段 中文圈学习资料或书籍少,有部分是翻译国外产品,能 不能中国人向国外输出作品 Rust 缺少学习资源 Rust 未来大有可为 Rust 在操作系统,数据库,各种框架和工具上应用范围 广 写作动机0 码力 | 28 页 | 3.52 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南第一步是 cmake -B build ,称为配置阶段( configure ),这时只检测环境并生成构建规则 • 会在 build 目录下生成本地构建系统能识别的项目文件( Makefile 或是 .sln ) • 第二步是 cmake --build build ,称为构建阶段( build ),这时才实际调用编译器来编译代码 • 在配置阶段可以通过 -D 设置缓存变量。第二次配置时,之前的 CMake 自己设置好的冲突,导致出 错。 请始终用 CXX_STANDARD 或是全局变量 CMAKE_CXX_STANDARD 来 设置 -std=c++17 这个 flag , CMake 会在配置阶段检测编译器是否支持 C++17 。 CUDA 的 -arch=sm_75 也是同理,请使用 CUDA_ARCHITECTURES 属 性。 再说了 -std=c++17 只是 GCC 编译器的选项,无法跨平台用于0 码力 | 166 页 | 6.54 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程BLS ,而且他优化得比我们手写的 更好…… • 然后 atomicMax 求数组最大值,也同理。 怪事 • 不过看了一下生成的 PTX 汇编,好像也没有优化掉的样子 ?难道是 CUBIN 那一阶段做的?还是驱动做的?还在向王 鑫磊求教中…… 第 9 章:共享内存进阶 GPU 的内存模型 GPU 的内存模型 全局内存:在 main() 中通过 cudaMalloc 分配的内存 共享内存:每个板块都有一个,通过0 码力 | 142 页 | 13.52 MB | 1 年前3
Zadig 产品使用手册上下游伙伴 安全简单自主可控:私有化 部署,现有服务 0 迁移成本 、体验丝滑接入容易、学习 使用门槛极低 现存做法大多以「单点工具 + 写脚本」或运管类平台为主, Zadig 则是面向开发者视角,中立,云原生一体化价值链平台。 与现存 DevOps 方案对比: 现存方案 典型代表 方案特点分析 Zadig 优势 传统 Jenkins 方案 GitLab + Jenkins + 脚本化 环境,基础设施对接及企业级 SSO/ 权限管理 等 运维管理类平台 蓝鲸 Rainbond KubeSphere KubeVela 面向资源管理的运维工具集 面向开发者,需结合 CI/CD 工具额外 搭建全流程能力 专门面向开发者的生产力平台,涵盖需求到开 发,测试,运维的云原生一体化技术底座支撑 云厂商 DevOps 平台 华为云 DevCloud 阿里云效 腾讯 CODING 云厂商引流为主,锁定风险高 基于代码管理的 DevOps 方案 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 开发 Zadig 核心特性: 运维 真正意义的持续交付:以工程师体验为核心,价值交付为理念,完成需求到发布的全路径。 测试 发布 洞察 一堆复杂脚本、维护成本极高 员工手工操作费时费力易出错0 码力 | 52 页 | 22.95 MB | 1 年前3
夏歌-使用Rust构建LLM应用第三届中国 Rust 开发者大会 使用 Rust 构建 LLM 应用 夏歌 SECTION TITLE SECTION TITLE 我们能不能直接用 Rust • 训练 • 推理 • AI 应用相关的工具 • WASI-NN spec • WasmEdge 已经支持 Pytorch 、 TensorFlow Lite • WASI-NN 2.0 比如 Langchain Rewrite Rust Rust 太难学! 为什么不用 Rust ? 学习曲线太陡峭了,学习周期太长了 招 Rust 开发太难了 Low code Rust Rust 在系统编程已经取得了巨大成功 培养更广泛的 Rust 开发 围绕 LLM 生态封装相应的 Rust 框 架,让开发者能够使用简单的 Rust 写 应用 如何用 Rust 实现的 构建和部署 AI 相关工作流的 serverless0 码力 | 36 页 | 38.31 MB | 1 年前3
共 28 条
- 1
- 2
- 3













