积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(26)C++(19)Rust(7)数据库(1)系统运维(1)MySQL(1)云计算&大数据(1)Kubernetes(1)存储(1)

语言

全部中文(简体)(27)中文(简体)(2)

格式

全部PPT文档 PPT(29)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 29 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 数据库
  • 系统运维
  • MySQL
  • 云计算&大数据
  • Kubernetes
  • 存储
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 了单独一个指令。这里尽管不 是地址,但同样可以利用 lea 指令简化生成的代码大小。 eax = rdi + rsi * 8 指针访问对象:线性访问地址 rsi = (int64_t)esi eax = *(int *)(rdi + rsi * 4) 为什么乘以 4 ?因为访问的 对象, int 的大小是 4 。 指针的索引:尽量用 size_t eax = *(int *)(rdi + rsi * 4) 什么是 xmm 系列寄存器? • xmm 寄存器有 128 位宽。 • 可以容纳 4 个 float ,或 2 个 double 。 • 刚才的案例中只用到了 xmm 的低 32 位 用于存储 1 个 float 。 addss 是什么意思? • 可以拆分成三个部分: add , s , s 1. add 表示执行加法操作。 2. 第一个 s 表示标量 (scalar) ,只对 xmm
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 GPU 专题) 为什么需要模板函数( template ) • 避免重复写代码。 • 比如,利用重载实现“将一个数乘以 2” 这个 功能,需要: 为什么面向对象在 HPC 不如函数式和元编程香了? 这个例子要是按传统的面向对象思想,可能是这样: 令 Int, Float, Double 继承 Numeric 接口类并实现 ,其中 multiply(int) 作为虚函数。然后定义: Numeric 特性:引用( int & ) • 众所周知, C++ 中有一种特殊的类型,叫做引用。只需要在原类型后面加一个 & 即可。 • 引用的本质无非是指针,当我们试图修改一个引用时,实际上是修改了原来的对象: 等价于 : 可见,和 C 语言的 int * 相比 无非是减少了 & 和 * 的麻烦 而已。 C++ 特性:常引用( int const & ) • 如果说 int & 相当于 int *
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    allocator ,内存管理与对象生命周期 ASCII 码 第 1 章 计算机如何表达字符 https://zh.wikipedia.org/wiki/ASCII 计算机如何表达字符 • 众所周知,计算机只能处理二进制 整数,字符要怎么办呢? • 于是就有了 ASCII 码表,他规定, 每个英文字符(包括大小写字母、 数字、特殊符号)都对应着一个整 数。在计算机里只要存储这个的整 数,就能代表这个字符了。 器里 开洞。但“移动语义”这个概念在旧 cpp 里没有,所以这个是真正必要的语言本身的改动。 • 而 java 就是在语言层面,直接在 jvm 里引入了引用计数,宣称“一切皆对象”,虽然方便了 富连网业务中常见的面向对象编程范式,但也妨碍了 java 进军数据处理,高性能计算等领域 。 java 第八帝国 cpp 第十一共和国 chrono 和 complex 也定义了一些 literials 则不会抛出异常,他只是简单地给字符串的首地址指针和 i 做个加法运算,得到新的指针并解引用。如果你给的 i 超过了字符 串大小 i ≥ s.size() ,那程序的行为是未定义的,因为这个地方可能 有其他的对象,程序可能会奔溃,也可能行为异常。如果是富连网 程序,还可能会被黑客利用,窃取或篡改服务器上的数据。 • 那为什么还要 [] ?性能! at 做越界检测需要额外的开销, [] 不需 要。 • 所以
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 13 C++ STL 容器全解之 vector

    C++ 标准库五大件:分配器( allocator ) 侯捷 STL 侯捷 STL vector 容器 vector 容器:构造函数 • vector 的功能是长度可变的数组,他里面的数据 存储在堆上。 • vector 是一个模板类,第一个模板参数是数组里 元素的类型。 • 例如,声明一个元素是 int 类型的动态数组 a : • vector a; vector 容器:构造函数和 const noexcept; vector 容器: data() 获取首地址指针 • data() 会返回指向数组中首个元素的指针, 也就是等价于 &a[0] 。由于 vector 是连续 存储的数组,因此只要得到了首地址,下一 个元素的地址只需指针 +1 即可。 • 因为指针的 p[i] 相当于 *(p + i) ,因此可以 把 data() 返回的首地址指针当一个数组来 访问。 com/zenustech/zeno/blob/master/zenovis/src/Scene.cpp vector 容器:生命周期由主对象管理 • C++ 中哪个运算符是最强的?我觉得是 } • 因为 } 标志着一个语句块的结束,在这里,他 会调用所有身处其中的对象的解构函数。比如 这里的 vector ,他的解构函数会释放动态数组 的内存(即自动 delete )。 • vector 会在退出作用域时释放内存,这时候所
    0 码力 | 90 页 | 4.93 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    1 章:添加源文件 一个 .cpp 源文件用于测试 CMake 中添加一个可执行文件作为构建目标 另一种方式:先创建目标,稍后再添加源文件 如果有多个源文件呢? 逐个添加即可 使用变量来存储 建议把头文件也加上,这样在 VS 里可以出现在“ Header Files” 一栏 使用 GLOB 自动查找当前目录下指定扩展名的文件,实现批量添加源文件 启用 CONFIGURE_DEPENDS 改进: mylib 作为一个对象库 https://www.scivision.dev/cmake-object-libraries/ 对象库类似于静态库,但不生成 .a 文件,只由 CMake 记住该库生成了哪些对象文件 改进: mylib 作为一个对象库 https://www.scivision.dev/cmake-object-libraries/ 对象库类似于静态库,但不生成 .a 记住该库生成了哪些对象文件 对象库是 CMake 自创的,绕开了编译器和操作系统的各种繁琐规则,保证了跨平台统一性 。 在自己的项目中,我推荐全部用对象库 (OBJECT) 替代静态库 (STATIC) 避免跨平台的麻烦 。 对象库仅仅作为组织代码的方式,而实际生成的可执行文件只有一个,减轻了部署的困难。 静态库的麻烦: GCC 编译器自作聪明,会自动剔除没有引用符号的那些对 象 对象库可以绕开编译
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 分离该 线程——意味着线程的生命周期不再由当 前 std::thread 对象管理,而是在线程退 出以后自动销毁自己。 • 不过这样还是会在进程退出时候自动退出 。 解构函数不再销毁线程:移动到全局线程池 • 但是 detach 的问题是进程退出时候不会 等待所有子线程执行完毕。所以另一种解 法是把 t1 对象移动到一个全局变量去, 从而延长其生命周期到 myfunc 函数体外 。 opengl 的百般拖后腿下实现了 并发。 第 2 章:异步 异步好帮手: std::async • std::async 接受一个带返回值的 lambda ,自身返回一个 std::future 对象 。 • lambda 的函数体将在另一个线程里执行 。 • 接下来你可以在 main 里面做一些别的事 情, download 会持续在后台悄悄运行。 • 最后调用 future 的 get()
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践

    IObject 一切对象的公共基类。 • INode 一切节点的公共基类。 多态的经典案例 • IObject 具有一个 eatFood 纯虚函数,而 CatObject 和 DogObject 继承自 IObject ,他 们实现了 eatFood 这个虚函数,实现了多态。 • 注意这里解构函数( ~IObject )也需要是虚函数 ,否则以 IObject * 存储的指针在 delete 接口。 小知识: shared_ptr 如何深拷贝? 浅拷贝: 深拷贝: 思考:能不能把拷贝构造函数也作为虚函数? • 现在我们的需求有变,不是去对同一个对象调用两次 eatTwice ,而是先把对象复制一份 拷贝,然后对对象本身和他的拷贝都调用一次 eatFood 虚函数。 • 代码如下,这要怎么个封装法呢?你可能会想,是不是可以把拷贝构造函数也声明为虚函 数,这样就能实现了拷贝的多态?不行,因为 数,这样就能实现了拷贝的多态?不行,因为 C++ 规定“构造函数不能是虚函数”。 模板函数?未免有些差强人意 • 索性把 eatTwice 声明为模板函数的确能解决问题,但模板函数不是面向对象的思路,并 且如果 cat 和 dog 是在一个 IObject 的指针里就会编译出错,例如右图的 vector (这是游戏引擎中很常见的用法)。 正确解法:额外定义一个 clone 作为纯虚函数,然后让猫和狗分别实现他
    0 码力 | 54 页 | 3.94 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    第 0 章:稀疏矩阵 稠密数组存储矩阵 用 foreach 包装一下枚举的过程 改用 map 来存储 分离 read/write/create 三种访问模式 foreach 直接给出当前坐标指向的值 改用 unordered_map 来存储 unordered_map 手动 read(i, j) 也一样速度 索性把坐标和值打包成 tuple ,存储在 vector 按行压缩( Compressed e91.html 第 1 章:稀疏网格 稠密网格计算粒子经过的格点数量 改用更小的 char 存储 只用一个 bit 存储,一个 char 可以存储 8 个 bit 用 map 来存储 读取:如果不存在,则读到 0 写入:如果不存在,则创建该表项 用 unordered_map 来存储 map 基于红黑树,会按照键值排序,需要键值具有 operator< 重载,复杂度 O(logn) 16x16 分块存储 分块能减少 unordered_map 中存储的表项数量,从而减轻哈 希的压力。但意味着键值在空间上需要具有一定的局域性,否 则 会浪费分块中一 部分空间。 然而我们这里是 要用他记录粒子 经过的点,因此 具有一定空间局 域性,能够被分 块优化。 实际上空间局域 性正是稀疏网格 能够实现的一大 前提,稍后详细 讨论。 在 16x16 分块的基础上,只用一个 bit 存储 图片解释稀疏的好处
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    CPU 的厂商早就意识到了内存延迟高,读写效率低 下的问题。因此他们在 CPU 内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 数据。如果没有,则从内存中读取,并存储到缓存中; 如果有,则直接使用缓存中的数据。 • 这样一来,访问的数据量比较小时,就可以自动预先加 宽。三级缓存也装不下,那就取决于主内存 的带宽了。 • 结论:要避免 mem-bound ,数据量尽量足 够小,如果能装的进缓存就高效了。 L2: 256 KB L3: 12 MB 缓存的工作机制:读 • 缓存中存储的数据结构: • struct CacheEntry { • bool valid; • uint64_t address; • char data[64]; • }; 架构中每个条目的存储 64 字节的数据,这个条目 又称之为缓存行( cacheline )。 • 当访问 0x0048~0x0050 这 4 个字节时,实际会导致 0x0040~0x0080 的 64 字节数据整个被读取到缓存中。 • 这就是为什么我们喜欢把数据结构的起始地址和大小对齐到 64 字节,为的是不要浪费缓存行的存储空间。 缓存的工作机制:写 • 缓存中存储的数据结构:
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 Borsh 安全高效的二进制序列化

    Object Representation Serializer for Hashing • 字节级别确定性 • 执行速度快 Borsh • 轻量级 • 每一个对象与其二进制表示之间都存在一个双射映射 • 不同的对象的二进制表示一定不同 • 便于基于二进制表示进行 Hash 字节级别确定性 • 在 Rust 中, borsh 并没有使用 serde • 全部逻辑原生实现 • • 保证序列化后的二进制唯一性和确定性 • 主要序列化规则 Borsh 规范 • 整数采用低字节序( little endian) 存储 • 对于动态长度的集合,先用一个 u32 存储集合 size • 对于原本无序的集合(如 hashmap ),存储时使用 key 的字典序排序 Borsh 规范 let a: [u32; 5] = [1, 2, 3, 4, 5]; let a = vec
    0 码力 | 21 页 | 3.35 MB | 1 年前
    3
共 29 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件0403151311051007RustBorsh
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩