积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(19)C++(14)Rust(4)系统运维(2)DevOps(2)Go(1)云计算&大数据(1)Kubernetes(1)

语言

全部中文(简体)(21)中文(简体)(1)

格式

全部PPT文档 PPT(22)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 22 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • Go
  • 云计算&大数据
  • Kubernetes
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN xN 部署预发环境 xN 部署生产环境 xN 部署 / 灰度上线 xN 监控 / 告警 xN 版本归档 xN 交付追踪 xN 数据度量 xN 服务、工单管理 事件、缺陷管理 想 法 用 户 运行阶段 需求阶段 研发阶段 现代软件交付挑战:开发 5 分钟,上线 2 小时 服务一:设计 | 代码编写 | 构建 | 团队高效协作:定义团队角色工作流模板,随时可用云上环境 价值清晰呈现:为管理者提供全视角效能数据,赋能数字决策 人工低效操作减少 80% 构建资源利用率提升 60% 业务资源利用率提升 30% 统一治理内部规范,开发 自助上线;解放运维,工 作重心向业务稳定性保 障,建设平台工程体系 研发 研发时间被大量占用: • 本地开发环境难模拟 • 多业务联调艰难,诊断耗时多 • 出现问题诊断耗时多 •
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 线 (pipeline) 。流水线的目的是能把原本 串行的一系列指令并行化。为了理解为什 么需要流水线,我们先反过来,假设没有 流水线,会有什么坏处。 • 例如,右边你今天早上的任务清单。 流水线如何应付跳转指令:分支预测 • 但是问题是烧开水被烫伤只是个小概率事件!为了这个千分之一的概率而故意等着不刷牙是 否有点因噎废食?所以现在的 CPU 都有分支预测的能力。举例来说:你每天都执行刚刚 说的那个“早间活动”的任务清单。你发现“如果烧开水被烫伤”这件事似乎从来没发生过,于 是你渐渐意识到,被烫伤是个小概率事件,所以你“预判”到今天应该也不会发生意外,不再 等待烧完开水才开始刷牙,
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 GPU Resource Management On JDOS

    选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供 tensorboard 任务列表 可以指定 git 的 commit-id 发起任务 任务详情 可以查看具体的容器列表,以及查看容器的日志和事件 Serving 服务 提供统一便捷的 Serving 服务,只需用户指定模型,即可提供
    0 码力 | 11 页 | 13.40 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    Worker Future.poll() Reactor fd fd listen listen find 现有并发框架 Third Party Runtime 目前 Rust 社区最广泛使用的事件 驱动型调度框架,擅长处理大量异 步 IO 的场景。具有非常强大的生 态。 tokio 第一个适配 Rust async/await 原语 的运行时库,与 tokio 类似支持异步 IO ,目前已经半废弃 Reactor epoll fd1 fd2 …. 结构化并发 优先级 deadline Async Sync Async IO Async Timer Parallel Calc 事件 到达 注 册 事 件 任务优先级调度 Task priority and quality of service 任务优先级调度 Linux CFS 调度 : 线程优先级 • 设置线程的 Nice
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 可见数据量较小时,实际带宽甚至超过了 理论带宽极限 42672 MB/s ! • 而数据量足够大时, 才回落到正常的带宽 。 • 这是为什么? CPU 内部的高速缓存 • 原来 CPU 的厂商早就意识到了内存延迟高,读写效率低 下的问题。因此他们在 CPU 内部引入了一片极小的存储 器——虽然小,但是读写速度却特别快。这片小而快的 存储器称为缓存( cache )。 • 当 CPU 访问某个地址时,会先查找缓存中是否有对应的 MyClass 内部是 SOA ,而外部仍是一个 vector 的 AOS—— 这种内存布局称为 AOSOA 。 • 缺点是必须保证数量是 1024 的整数倍, 而且因为要两次指标索引,随机访问比较 烦。 • 这里的 1024 并非随意选取,而是要让每 个属性 SOA 数组的大小为一个页 ( 4KB )才能最高效,原因稍后会说明。 AOSOA :注意,内部 SOA
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    • 仅仅只是 printf 和 scanf 这些特定的函数会对 % 特殊处理而已。 • 而 \ 比较厉害,他是编译器内部专门为他“开了个后门”。 • 编译器检测到字符串中出现 \ 就会把下一个字符特殊处理。 • 而 % ,编译器并不会特殊处理 % ,是 printf 函数内部在运行时处理了 % 的下一个字符。 • % 就像你和同学随手“拉钩”定下的约定,这是 printf 约定俗成的。 • 碍了 java 进军数据处理,高性能计算等领域 。 java 第八帝国 cpp 第十一共和国 chrono 和 complex 也定义了一些 literials std::literials 内部定义一览 std::literials::string_literials std::literials::chrono_literials 字符串 <--> 数字 第 4 章 java 经典操作:字符串 have ” + 42.toString() + “ yuan” 。 • 但是我们说过 cpp 是不喜欢在编译器里开洞的,他的字符串类型 std::string 是在标准库里定义的,并不是在编译器内部定义的( cpp 之父:语言本身要和 标准库具体实现解耦)如果你嫌弃标准库不好用,也可以定义一个自己的字符 串类型 mylib::String 重载个 + 运算符,和标准库的 std::string
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    里取出任务,以免 t1 闲置浪费时间。 • 因此内部 for 循环有可能“窃取”到另一个 外部 for 循环的任务,从而导致 mutex 被重复上锁。 解决 1 :用标准库的递归锁 std::recursive_mutex 解决 2 :创建另一个任务域,这样不同域之间就不会窃取工作 解决 3 :同一个任务域,但用 isolate 隔离,禁止其内部的工作被窃取 (推荐) 第 5 章:任务分配 simple_partitioner 比 auto_partitioner 快 3.31 倍 原因 • tbb::simple_partitioner 能够按照给定的粒度 大小( grain )将矩阵进行分块。块内部小区 域按照常规的两层循环访问以便矢量化,块外 部大区域则以类似 Z 字型的曲线遍历,这样 能保证每次访问的数据在地址上比较靠近,并 且都是最近访问过的,从而已经在缓存里可以 直接读写,避免了从主内存读写的超高延迟。 直接读写,避免了从主内存读写的超高延迟。 • 下次课会进一步深入探讨访存优化,详细剖析 这个案例,那么下周六 14 点敬请期待。 第 6 章:并发容器 std::vector 扩容时会移动元素 • std::vector 内部存储了一个指针,指向一段容量 capacity 大于等于其 size 的内存。 • 众所周知, push_back 会导致 size 加 1 ,但 当他看到容量 capacity 等于当前 size
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    区间循环,不会越界,也不会漏掉几个元 素。 • 这样一个 for 循环非常符合 CPU 上常见 的 parallel for 的习惯,又能自动匹配不同 的 blockDim ,看起来非常方便。 从线程到板块 • 核函数内部,用之前说到的 blockDim.x + blockIdx.x + threadIdx.x 来获取线程在整个 网格中编号。 • 外部调用者,则是根据不同的 n 决定板块的 数量( gridDim allocate/deallocate 成员函数的类,这样就可以“骗过” vector , 让他不是在 CPU 内存中分配,而是在 CUDA 的统一内存 (managed) 上分配。 • 实际上这种“骗”来魔改类内部行为的操作,正是现代 C++ 的 concept 思想所在。因此替换 allocator 实际上是标准库允许的 ,因为他提升了标准库的泛用性。 进一步:避免初始化为 0 • vector 在初始化的时候(或是之后 (寄 存器,共享内存等)的开销,毕竟 GPU 的数据量比较大,禁不起这样切换来切换去…… • 一个 SM 可同时运行多个板块,这时多个板块共用同一块共享内存(每块分到的就少了) 。 • 而板块内部的每个线程,则是被进一步调度到 SM 上的每个 SP 。 无原子的解决方案: sum 变成数组 • 刚刚的数组求和例子,其实可以不需要原子操作。 • 首先,声明 sum 为比原数组小 1024
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    find 函数。 • set a = { 1, 4, 2, 8, 5, 7 }; • a.find(5); • set 之所以能够实现 O(logn) 复杂度高效查找,是因为他内部预先构建好了一棵二叉排序树。 • 如何构建的?请看动画: 1 4 2 8 5 7 待插入的数 set 查找为什么高效 • set 又称集合(数学概念),是专为查找优化的容器,查找元素要用他自带的 find 函数。 • set a = { 1, 4, 2, 8, 5, 7 }; • a.find(5); • set 之所以能够实现 O(logn) 复杂度高效查找,是因为他内部预先构建好了一棵二叉排序树。 • 如何构建的?请看动画: 1 4 2 8 5 7 1 待插入的数 4 set 查找为什么高效 • set 又称集合(数学概念),是专为查找优化的容器,查找元素要用他自带的 find 函数。 • set a = { 1, 4, 2, 8, 5, 7 }; • a.find(5); • set 之所以能够实现 O(logn) 复杂度高效查找,是因为他内部预先构建好了一棵二叉排序树。 • 如何构建的?请看动画: 1 4 2 8 5 7 1 待插入的数 2 set 查找为什么高效 • set 又称集合(数学概念),是专为查找优化的容器,查找元素要用他自带的
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 14 C++ 标准库系列课 - 你所不知道的 set 容器

    作为模板类,其实有两 个模板参数: set • 第一个 T 是容器内元素的类 型,例如 int 或 string 等。 • 第二个 CompT 定义了你想 要的比较函子, set 内部会 调用这个函数来决定怎么排 序。 • 如果 CompT 不指定,默认 会直接用运算符 < 来比较。 • 这里我们定义个 MyComp 作为比较函子,和默认的一 样用 < 来比较,所以没有变 会把 “ arch” 和 “ any” 视为相等的元素?明 明内容都不一样? set 的排序:自定义排序函数 • 首先搞懂 set 内部是怎么确定 两个元素 a 和 b 相等的: • !(a < b) && !(b < a) • 也就是说他 set 内部没有用到 == 运算符,而是调用了两次 比较函子来判断的。逻辑是: • 若 a 不小于 b 且 b 不小于 a ,则视为 a 等于 。虽然低效,但至少可 以用了。 std::next 等价于 + • 但是这样手写三个 ++ 太麻烦了 ,而且是就地操作,会改变迭代 器本身。 • 因此标准库提供了 std::next 函 数,他的内部实现相当于这样: • 没错,他会自动判断迭代器是否 支持 + 运算,如果不支持,会 改为比较低效的调用 n 次 ++ 。 std::advance 等价于 += • 刚刚的 std::next
    0 码力 | 83 页 | 10.23 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Zadig面向开发开发者原生DevOps平台C++高性性能高性能并行编程优化课件GPUJDOS陈明煜2023RustChinaConf071506081714
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩