JVM 内存模型JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method0 码力 | 1 页 | 48.42 KB | 1 年前3
C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理现代 C++ 入门: RAII 内存管 理 by 彭于斌( github@archibate ) 往期录播: https://space.bilibili.com/263032155 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: nv 将多个逻辑上相关的变量包装成一个类 因此 C++ 的 vector 将他俩打包起来,避免程序员犯错 封装:不变性 比如当我要设置数组大小为 4 时,不能只 nv = 4 还要重新分配数组内存,从而修改数组起始地址 v 常遇到:当需要修改一个成员时,其他也成员需要被修改,否则出错 这种情况出现时,就意味着你需要把成员变量的读写封装为成员函数 不变性:请勿滥用封装 • 仅当出现“修改一个成员时,其他也成员要0 码力 | 96 页 | 16.28 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound • 通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 64 字节)所花费的时间。 • 根据计算: 125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 6 个物理核心上并行加速后, 还是变成 mem-bound 了。0 码力 | 147 页 | 18.88 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型课程 PPT 和代码: https://github.com/parallel101/course 本课涵盖:稀疏矩阵、 unordered_map 、空间稀 疏网格、位运算、浮点的二进制格式、内存带宽优 化 面向人群:图形学、 CFD 仿真、深度学习编程人 员 第 0 章:稀疏矩阵 稠密数组存储矩阵 用 foreach 包装一下枚举的过程 改用 map 来存储 分离 read/write/create node) ,而这里的 unordered_map 就是充当根节点 (root node) 。 图片解释稀疏的好处 传统稠密二维数组 无边界稀疏分块哈希表 此外,还是按需分配内存,即使被写入的部分奇形怪状也不会浪费内存。 这些被写入的部分被称为激活元素 (active element) ,反之则是未激活 (inactive) 。 这就是稀疏的好处,按需分配,自动扩容。 分块则是利用了我们存储的 (空指针) 图片解释:指针数组的稀疏 这样指针表中为 null 的部分,稠密叶节点的内存就省掉 了 垃圾回收 (garbage-collect) • 如果是运行的仿真,则液体可能会移动到 别的地方去。这时液体曾经存在过的地方 也仍然处于激活状态,可以每隔若干帧及 时释放掉这些不用的指针块以节省内存。 unordered_map 作为顶层,指针作为中层,稠密数组作为底层 • 实现稀疏的方法有:0 码力 | 102 页 | 9.50 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: r8 到 r15 是 64 位 x86 新增的寄存器,给了汇编程序员更大的空间,降低了编译 器处理寄存器翻车( register spill )的压力。 • 因此 64 位比 32 位机器相比,除了内存突破 4GB 限制外,也有一定性能优势。 8 位, 16 位, 32 位, 64 位版本 al, ax, eax, rax r15b, r15w, r15d, r15 AT&T 汇编语言 GCC SIMD 让访问内存更有规律,节约了指 令解码和指令缓存的压力等原因,出现加速超过 4 倍的情况。 第 1 章:化简 编译器优化:代数化简 编译器优化:常量折叠 编译器优化:举个例子 编译器优化:我毕竟不是万能的 结论:尽量避免代码复杂化,避免使用会造 成 new/delete 的容器。 简单的代码,比什么优化手段都强。 造成 new/delete 的容器:我是说,内存分配在堆上的容器0 码力 | 108 页 | 9.47 MB | 1 年前3
新一代分布式高性能图数据库的构建 - 沈游人Parallel Processing 架构,大规模集群 分布式存储及并行计 算, Shared Nothing 模式支 持存储计算分离 高性能 基于 Rust 开发的分布式存储引 擎及图计算引擎,精细的内存 管理设计,内置索引系统,支 持毫秒级的并发查询响应速度 易用 AQL(Atlas Graph Query Language) ,类 SQL 的图查询 语言,内置上百种分析函数, 面向分析师友好,拥抱标准, CRAQ 图原生存储 索引 LSM-Tree 容灾保障 ( BR ) 元数据层 事务管理 MVOCC 计算层 Cypher AST 优化器 图计算 内存加速引 擎 服务接口 HTTP/RPC Spark 连接器 Python UDF 执行器 索引管理 一致性存储 RAFT 分片管理 元数据 集群管理 用户权限 GNN 应用层 将不同的执行阶段推送到对应的存储 引擎,减少网络传输和内存压力 实际执行时,执行器等待流数据,处 理后将数据推送到下一个执行器 切分执行计划,将执行计划划分成不 同的执行阶段 内存缓存结构:加速图数据查询 • 由于图数据的查询通常是 IO 密集型,且访问的数据随机又分散,拥有内存缓存能起到很 好的加速效果 • 要想让内存缓存发挥最大的作用,就要能在有限的内存中存下尽量多的图数据 • 例如,对于属性的存储,可以通过自行序列化0 码力 | 38 页 | 24.68 MB | 1 年前3
谈谈MYSQL那点事查询 查询 事务管理 事务管理 数据库设计 数据库设计 数据分布 数据分布 网络 网络 操作系统 操作系统 硬件 硬件 使用好的硬件,更快的硬盘、大内存、多核 使用好的硬件,更快的硬盘、大内存、多核 CPU CPU ,专业的 ,专业的 存储服务器( 存储服务器( NAS NAS 、 、 SAN SAN ) ) 设计合理架构,如果 设计合理架构,如果 MySQL 不同引擎进行不同定制 性配置 性配置 针对不同的应用情况进行合理配置 针对不同的应用情况进行合理配置 针对 针对 my.cnf my.cnf 进行配置,后面设置是针对内存为 进行配置,后面设置是针对内存为 16G 16G 的服务器进行的合理设置 的服务器进行的合理设置 服务优化 服务优化 MySQL MySQL 配置原则 配置原则 服务优化 服务优化 公共选项 公共选项 query_cache_size 0 ( 不打开 ) 128M 查询缓存区的最大长度,按照当前需求,一 倍一倍增加,本选项比较重要 sort_buffer_size 512K 128M 每个线程的排序缓存大小,一般按照内存可 以设置为 2M 以上,推荐是 16M ,该选项对 排序 order by , group by 起作用 record_buffer 128K 64M 每个进行一个顺序扫描的线程为其扫描的每 张表分配这个大小的一个缓冲区,可以设置0 码力 | 38 页 | 2.04 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 12 个逻辑核心。 • 似乎这里 reduce 的加速比是逻辑核心数量,而 for 的加速比是物理核心的数量? • 剧透:因为本例中 reduce 是内存密集型, for 是计算密集型。 • 超线程对 reduce 这种只用了简单的加法,瓶颈在内存的算法起了作用。 • 而本例中 for 部分用了 std::sin ,需要做大量数学运算,因此瓶颈在 ALU 。 • 这里卖个关子,欲知后事如何,请待下集揭晓! 且都是最近访问过的,从而已经在缓存里可以 直接读写,避免了从主内存读写的超高延迟。 • 下次课会进一步深入探讨访存优化,详细剖析 这个案例,那么下周六 14 点敬请期待。 第 6 章:并发容器 std::vector 扩容时会移动元素 • std::vector 内部存储了一个指针,指向一段容量 capacity 大于等于其 size 的内存。 • 众所周知, push_back 会导致 size0 码力 | 116 页 | 15.85 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 除了接受一个时间段的 sleep_for ,还有 接受一个时间点的 sleep_until ,表示让当 前线程休眠直到某个时间点。 第 1 章:线程 进程与线程 • 进程是一个应用程序被操作系统拉起来加载到内存之后从开始执行到执行结束的这样一个 过程。简单来说,进程是程序(应用程序,可执行文件)的一次执行。比如双击打开一个 桌面应用软件就是开启了一个进程。 • 线程是进程中的一个实体,是被系统独立分配和调度的基本单位。也有说,线程是 可 执行调度的最小单位。也就是说,进程本身并不能获取 CPU 时间,只有它的线程才可以。 • 从属关系:进程 > 线程。一个进程可以拥有多个线程。 • 每个线程共享同样的内存空间,开销比较小。 • 每个进程拥有独立的内存空间,因此开销更大。 • 对于高性能并行计算,更好的是多线程。 为什么需要多线程:无阻塞多任务 • 我们的程序常常需要同时处理多个任务。 • 例如:后台在执行一个很耗时的任务,比0 码力 | 79 页 | 14.11 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 其中静态库相当于直接把代码插入到生成的可执行文件中,会导致体积变大,但是只需要 一个文件即可运行。 • 而动态库则只在生成的可执行文件中生成“插桩”函数,当可执行文件被加载时会读取指定目 录中的 .dll 文件,加载到内存中空闲的位置,并且替换相应的“插桩”指向的地址为加载后的 地址,这个过程称为重定向。这样以后函数被调用就会跳转到动态加载的地址去。 • Windows :可执行文件同目录,其次是环境变量 %PATH%0 码力 | 32 页 | 11.40 MB | 1 年前3
共 20 条
- 1
- 2













