积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(29)C++(19)Rust(8)系统运维(2)DevOps(2)数据库(1)Java(1)Go(1)MySQL(1)云计算&大数据(1)

语言

全部中文(简体)(31)中文(简体)(2)

格式

全部PPT文档 PPT(33)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 33 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • DevOps
  • 数据库
  • Java
  • Go
  • MySQL
  • 云计算&大数据
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 JVM 内存模型

    JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method
    0 码力 | 1 页 | 48.42 KB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    入门: RAII 内存管 理 by 彭于斌( github@archibate ) 往期录播: https://space.bilibili.com/263032155 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: 课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了)
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 Rust与算法 - 谢波

    第三届中国 Rust 开发者大会 Rust 与 算法 谢波 …………………………………………………………………………. …………………………………………………………………………… ...... …………………………………………………………………………… ……………… …………………………………………………………………………… ………………………. …………………………………………………………………………… 算法相关知识 • Rust 实现数据结构 • Rust 实现算法 • 总结及学习资源 背景介绍 • 个人信息 • 写作动机 • 可参考点 • 为什么 背景介绍 # 个人职业 # 与 Rust 结缘 # 前 GPT 时代作品 个人信息 结算及大数据系统研发工程师 疫情下的明智选择 / 个人项目实践 学习中总结探索 2015 年发布,很多人近几年才知道 Rust , Rust 公号:觉学社、 Rust 编程指北 # 书籍 《编程之道》、《 Rust 权威指南》、《 Rust 实战》、《深入浅出 Rust 》、 《 Rust 死灵书》、《 Rust 异步编程》、 《数据结构与算法( Rust 语言描述)》 # 在线教程 Rust Course 、 PingCap Talent Plan 、 Rust LeetCode 、令狐壹冲 (B 站 ) # 开源项目 Rust
    0 码力 | 28 页 | 3.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    C++ 系列课:字符与字符串 by 小彭老师( @archibate ) 课件 & 代码: https://github.com/parallel101/course 上期回顾: https://www.bilibili.com/video/BV1m34y157wb 课程安排 1. vector 容器初体验 & 迭代器入门 (BV1qF411T7sd) 2. 你所不知道的 万能的 map 容器全家桶及其妙用举例 5. 函子 functor 与 lambda 表达式知多少 6. 通过实战案例来学习 STL 算法库 7. C++ 标准输入输出流 & 字符串格式化 8. traits 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 ASCII 码 第 1 章 计算机如何表达字符 https://zh 有一系列成员函数,例如 find/replace/substr…… • string 可以通过 s.c_str() 重新转换回古板的 const char * 。 • string 在离开作用域时自动释放内存 (RAII) ,不用手动 free 。 C++ 字符串和 C 字符串的不同 • C 语言字符串是单独一个 char *ptr ,自动以 ‘ \0’ 结尾。 • C++ 字符串是 string
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    本期 ) 5. 函子 functor 与 lambda 表达式知多少 6. 通过实战案例来学习 STL 算法库 7. C++ 标准输入输出流 & 字符串格式化 8. traits 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 10. C++ 异常处理机制的前世今生 我们都要认真鞋习哦 我们都要认真鞋习哦 第一章:读取与写入 我负责监督你鞋习 ! 我负责监督你鞋习 值坑了他。所以他们又另起炉灶,发明了越界时不会自动创建零值,而是能抛出异常的 at 函数。 C++ 和 Python 用法对比 C++ 和 Python 用法对比(运算符重载展开成普通函数后) 简单粗暴的 Java 用法 • 与 Python 和 C++ 不同, Java 放弃了花里胡哨的运算符重载,索性都采用成员函数 get put 来表示,非常明确。主要是为了把 get 和 put 作为接口函数,可以对应多个具体 实现。 categories[key].push_back(str); } • 则 categories 最后为: • {‘h’: {“happy”, “hello”}, ‘w’: {“world”}}; 第二章:判断与删除 不鞋习的小彭友 就会进到这儿 ! 不鞋习的小彭友 就会进到这儿 ! 找不到时,自动采用默认值 • 要求:当 m 中有 “ key” 时返回 key 对应的值,否则返回指定的默认值 “ default”
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    也可以复合 if 的各种判断语句,例如 NOT TARGET TBB::tbb AND TARGET Eigen3::eigen 表示找得到 TBB 但是找不到 Eigen3 的情况。 第 6 章:输出与变量 在运行 cmake -B build 时,打印字符串(用于调试) message(STATUS “...”) 表示信息类型是状态信息,有 -- 前缀 message(WARNING “.. 引号,例如: set(sources “main.cpp” “mylib.cpp” “C:/Program Files/a.cpp”) message(“${sources}”) 第 7 章:变量与缓存 重复执行 cmake -B build 会有什么区别? 可以看到第二次的输出少了很多,这是因为 CMake 第一遍需要检测编译器 和 C++ 特性等比较耗时,检测完会把结果存储到缓存中,这样第二遍运行 值 一般来说 CMake 自带的变量(如 CMAKE_BUILD_TYPE )都会这样设置。 这样项目的使用者还是可以用 -D 来指定参数,不过会在 ccmake 里看不到。 第 8 章:跨平台与编译器 在 CMake 中给 .cpp 定义一个宏 根据不同的操作系统,把宏定义成不同的值 CMake 还提供了一些简写变量: WIN32, APPLE, UNIX, ANDROID, IOS
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    我们不考虑韭菜情怀的话不用管,我们只需要指定架构的版本号是多少就行啦。 • 毕竟一个 72 这样一个单调的整数,听起来没有“高大上地致敬科学家们的名字以彰显其高 尚人文情怀的超绝境界”吸引投资人嘛。 第 1 章:线程与板块 三重尖括号里的数字代表什么意思? • 刚刚说了 CUDA 的核函数调用时需要用 kernel<<<1, 1>>>() 这种奇怪的语法,这里面 的数字代表什么意思呢? • 不妨把 <<<1 API 和这个很像,但毕竟没有 CUDA 可以直接在核函数里调用核函数并指定参数这么方便…… 不过,这个功能同样需要开启 CUDA_SEPARABLE_COMPILATION 。 第 2 章:内存管理 如何从核函数里返回数据? • 我们试着把 kernel 的返回类型声明为 int ,试 图从 GPU 返回数据到 CPU 。 • 但发现这样做会在编译期出错,为什么? • 刚刚说了 kernel 访问,结果还是失败了。 原因: GPU 使用独立的显存,不能访问 CPU 内存 • 原来, GPU 和 CPU 各自使用着独立的内 存。 CPU 的内存称为主机内存 (host) 。 GPU 使 用的内存称为设备内存 (device) ,他是显卡上板载 的,速度更快,又称显存。 • 而不论栈还是 malloc 分配的都是 CPU 上的内存 ,所以自然是无法被 GPU 访问到。 • 因此可以用用 cudaMalloc
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound • 通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 64 字节)所花费的时间。 • 根据计算: 125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 6 个物理核心上并行加速后, 还是变成 mem-bound 了。
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    by 彭于斌( @archibate ) 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业)
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业)
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
共 33 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
figjavamemoryarchpptxC++高性性能高性能并行编程优化课件02谢波2023RustChinaConf大会Rust算法Shieber15171108070106
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩