积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(70)云计算&大数据(53)Python(42)系统运维(32)存储(31)Service Mesh(27)综合其他(14)人工智能(13)云原生CNCF(11)前端开发(10)

语言

全部中文(简体)(139)英语(22)中文(繁体)(14)中文(简体)(5)zh(2)JavaScript(1)西班牙语(1)日语(1)zh-cn(1)

格式

全部PDF文档 PDF(184)TXT文档 TXT(1)PPT文档 PPT(1)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 186 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Python
  • 系统运维
  • 存储
  • Service Mesh
  • 综合其他
  • 人工智能
  • 云原生CNCF
  • 前端开发
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • zh
  • JavaScript
  • 西班牙语
  • 日语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 05-MoonBit 编程语言(WASM 技术)服务端应用展望以及对Kubernetes生态的影响

    MoonBit 编程语言(WASM 技术) 服务端应用展望 以及对Kubernetes生态的影响 沙渺(MoonBit 语言社区开发者) 本分享包含大量目前尚处在早期开发阶段甚至概念阶段, 尚未获得广泛应用的技术。 仅为前景展望,不推荐用于当前立项开发的实际工程。 敬请注意 内容 • WASM 技术栈现状和 WASM 后端应用的构想 • MoonBit 语言介绍 • MoonBit • 大多数概念可以复用 • 个别概念对 WASM 镜像更加有用(例如节点亲和性) 对 Kubernetes 的挑战 • 层数过度设计 • 抽象粒度与 WASM 惯例的差异 • 容器间交互模型与 WASM 惯例的差异 • WASM 的细粒度观测和管理不是 Kubernetes 层的专长 Kubernetes + WASM 后端应用 架构和概念有共识,但很多问题仍待解答 • 全新语言(2023
    0 码力 | 30 页 | 3.41 MB | 10 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    DeepSeek:从入门到精通 @新媒沈阳 团队 :余梦珑博士后 清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    、余梦珑博士后 DeepSeek:从入门到精通 2025年2月 清华大学 新闻学院 人工智能学院 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • Deep DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 如何使用DeepSeek? 网页端:https://chat.deepseek.com APP:DeepSeek 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外
    0 码力 | 103 页 | 5.40 MB | 9 月前
    3
  • pdf文档 Service Mesh 发展趋势(续) 蚂蚁金服 | 骑士到中盘路向何方?

    ServiceMesh发展趋势(续) 蚂蚁金服 敖小剑 棋到中盘路往何方Part 0:前言 5月底,我在Cloud Native Meetup上做了一个“ServiceMesh 发展趋势:云原生中流砥柱”的演讲,当时主要讲了三块内容: - Service Mesh产品动态 - Service Mesh发展趋势 - Service Mesh与云原生 今天的内容可以视为是上次演讲部分内容的深度展开,如社区 1:ServiceMesh灵魂拷问一:要架构还是要性能? Mixer v1 架构的优点 • 集中式服务: • 提高基础设施后端的可用性 • 为前提条件检查结果提供集群级别的全局2级缓存 • 灵活的适配器模型,使其以下操作变得简 单: • 运维添加、使用和删除适配器 • 开发人员创建新的适配器(超过20个适配器)Part 1:ServiceMesh灵魂拷问一:要架构还是要性能? Mixer v1 v1 架构的缺点 • 管理开销 • 管理Mixer是许多客户不想负担的 • 进程外适配器强制运维管理适配器,增加此负担 • 性能 • 即使使用缓存,在数据路径中同步调用Mixer也会增加端到端延迟 • 进程外适配器进一步增加了延迟 • 授权和认证功能是天然适合mixer pipeline的,但是由于mixer 设计 的延迟和SPOF(单点故障)特性,导致直接在Envoy中实现 (Envoy
    0 码力 | 43 页 | 2.90 MB | 6 月前
    3
  • pdf文档 12-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫

    从【数据库中间件】到【云原生】 ——Apache ShardingSphere 架构演进 Apache Dubbo/ShardingSphere PMC 秦金卫(kimmking) 2020-12-04 20:00 云 原 生 学 院 # 1 2 目录 1.数据库框架:从数据库的性能与容量到数据库框架技术的产生 2.数据库中间件:从框架技术到分布式的数据库中间件技术 3.分布式数据库:从数据库中间件技术发展到分布式数据库 分布式数据库:从数据库中间件技术发展到分布式数据库 4.数据库网格:数据库与微服务、云原生的发展关系 5.数据库解决方案:如何基于 ShardingSphere 生态创建数据库解决方案 1.数据库框架 1.数据库框架 摩尔定律失效 分布式崛起 1.数据库框架 随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL面临: 1、容量有限,难以扩容 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 3、可用性不足,宕机问题 1.数据库框架 1.数据库框架 计算机领域的任何问题都可以通过增加一个中间层来解决。 数据库框架技术:在业务侧增强数据 库的能力。 直接在业务代码使用。 支持常见的数据库和JDBC。 轻量级,不需要额外的资源和机器。 1.数据库框架 1、改造对业务系统具有较大侵入性; 2、对于复杂的SQL,可能不支持; 3
    0 码力 | 23 页 | 1.91 MB | 6 月前
    3
  • pdf文档 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊

    高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 预警等等需要低时延 高算力的场景,需要 实现云边一体纳管, 简化运维,降低成本, 客户专注于业务领域。 • 无论是AIoT还是边缘 计算,核心要素是计 算,计算平台的训练 平台位于云端,而推 理计算位于BOX端,并 且能够适应各类算法 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景 赋能。 • 一切围绕如何将算力 输送到业务场景为中 心思想,构建技术体 系。 高级能力-业务双引擎循环驱动-业务数据化、数据业务化
    0 码力 | 20 页 | 5.17 MB | 6 月前
    3
  • pdf文档 宋净超 从开源 Istio 到企业级服务:如何在企业中落地服务网格

    从开源 Istio 到企业服务 ——如何在企业中落地服务网格 From Istio OSS to Enterprise Service Mesh 宋净超(Jimmy Song) September 24, 2022 Shanghai, China Cloud Native Application Networking Secure, Observe and manage microservices
    0 码力 | 30 页 | 4.79 MB | 6 月前
    3
  • pdf文档 Nacos架构&原理

    Nacos 配置模型 21 Nacos 内核设计 28 Nacos ⼀致性协议 28 Nacos 自研 Distro 协议 38 Nacos 通信通道 42 Nacos 寻址机制 56 Nacos 服务发现模块 63 Nacos 注册中心的设计原理 63 Nacos 注册中心服务数据模型 80 Nacos 健康检查机制 89 Nacos 配置管理模块 97 配置⼀致性模型 97 Nacos 改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 发者,各位系统架构师,少走弯路。 阿里巴巴云原生应用平台负责人 - 丁宇(叔同) 在阿里中间件开源、自研、商业三位⼀体的战略中,微服务 DNS(Dubbo+Nacos+Spring-cloud- 建云原生应用的动态服务发现、配置管理和服务管理平台。 官网:https://nacos.io/ 仓库:https://github.com/alibaba/nacos Nacos 优势 易⽤:简单的数据模型,标准的 restfulAPI,易用的控制台,丰富的使用文档。 稳定:99.9% 高可用,脱胎于历经阿里巴巴 10 年生产验证的内部产品,支持具有数百万服务的大 规模场景,具备企业级 SLA 的开源产品。
    0 码力 | 326 页 | 12.83 MB | 10 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。 有包含“春运2025丨X月X日,全社会跨区域人员流动量完 成X万人次”的网址进行去重、筛选,合并成网址列表 2.撰写python脚本,基于步骤1输出的网址列表提取所有网 址内容“截至目前 2025 年春运(2025年1月14日到2月8日) 相关数据(如日期、全社会跨区域人员流动量、铁路客运 量、公路人员流动量、水路客运量、民航客运量等)”完 成数据提取并写入文件“2025春运数据.txt” Open AI o3mini 响应速度快,能够高效提
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 2024 中国开源开发者报告

    观 点 编委会 21 | 2024 年中国开源模型:崛起与变革 26 | 开源模型未必更先进,但会更长久 30 | 大模型撞上“算力墙”,超级应用的探寻之路 36 | AI 的三岔路口:专业模型和个人模型 40 | 2024 年 AI 编程技术与工具发展综述 45 | RAG 的 2024:随需而变,从狂热到理性 51 | 大模型训练中的开源数据和算法:机遇及挑战 57 | 2024 开发者中间件工具生态 2024 年总结 66 | AI Agent 逐渐成为 AI 应用的核心架构 68 | 谈开源大模型的技术主权问题 72 | 2024:大模型背景下知识图谱的理性回归 77 | 人工智能与处理器芯片架构 89 | 大模型生成代码的安全与质量 93 | 2024 年 AI 大模型如何影响基础软件行业中 的「开发工具与环境」 98 | 推理中心化:构建未来 AI 基础设施的关键 Part 高瞻,Gitee AI 运营 设计:张琪 开发者是开源生态的重要支柱。 本章结合 、 的数据分 析,勾勒 2024 年中国开源开发者的整体画像趋势轮廓,主要 反映中国开源开发者使用开源大模型概况、开源项目/组织健康 度,以及中国开源社区的生态评估等情况。 Gitee 数据篇 本报告数据来源:2024年1月至2024年12月 Gitee及Gitee AI平台相关公开数据 4 / 111
    0 码力 | 111 页 | 11.44 MB | 9 月前
    3
共 186 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 19
前往
页
相关搜索词
05MoonBit编程语言编程语言WASM技术服务服务端应用展望以及Kubernetes生态影响DeepSeek入门精通20250204清华华大大学清华大学ServiceMesh发展趋势发展趋势蚂蚁金服骑士中盘路向何方12数据据库数据库中间中间件原生ApacheShardingSphere架构演进秦金卫27赋能AIoT边缘计算形态成熟成熟度模型之道高磊宋净超开源Istio企业企业级如何落地网格Nacos原理DeepResearch科研2024中国开发开发者报告
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩