积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(46)Python(22)云计算&大数据(20)综合其他(10)Service Mesh(10)人工智能(9)前端开发(7)Rust(6)云原生CNCF(5)数据库(4)

语言

全部中文(简体)(51)英语(20)中文(繁体)(14)中文(简体)(2)日语(1)

格式

全部PDF文档 PDF(87)TXT文档 TXT(1)
 
本次搜索耗时 0.495 秒,为您找到相关结果约 88 个.
  • 全部
  • 后端开发
  • Python
  • 云计算&大数据
  • 综合其他
  • Service Mesh
  • 人工智能
  • 前端开发
  • Rust
  • 云原生CNCF
  • 数据库
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 日语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 服务增强器社区介绍

    0 码力 | 7 页 | 20.77 MB | 6 月前
    3
  • pdf文档 腾讯云 Kubernetes 高性能网络技术揭秘——使用 eBPF 增强 IPVS 优化 K8s 网络性能-范建明

    0 码力 | 27 页 | 1.19 MB | 9 月前
    3
  • pdf文档 2024 中国开源开发者报告

    开发技术栈作为切入点,将深入探讨以下中国 AI 大模型领域的代表性开源项目社区。 这些开源项目社区覆盖了深度学习框架、向量数据库、AI辅 助编程、LLM 应用开发框架、模型微调、推理优化、LLM Agent,以及检索增强生成(RAG)等多个关键技术栈。 为了更全面客观地展示中国大模型 LLM 开发技术栈的开源 社区生态,我们使用了 对开源社区的生态评 估体系,希望通过这些数据洞察中国开源开发者在 AI 技术 领域的活跃度、生产力和创新能力。 组织给予减轻或免承担法律责任;《生成式人工智能服务管理暂行办法》 则明确了人工智能技 术的使用和合规要求,促进了开源模型在合规框架下良性发展。 变革 端上模型的兴起与隐私保护 随着小型模型的性能逐步增强,更多高级 AI 正转向在个人设备上运行。这一趋势不仅显著 降低了云端推理成本,还提升了用户隐私控制。 中国 AI 社区在这一领域也做了重要贡献,推出了如 Qwen2-1.5B、MiniCPM 系列和 典型案例,强化了推理能力的同时,也大大缓解了幻觉问题。 2. 大模型做不到的,“现存工具”强势补位。 无法持续更新的知识库,可以通过 RAG(Retrieval Augmented Generation,检索增强 生成)来解决。 RAG 的出现,让各界越来越深刻地认识到,大模型没必要存储那么多知识,只需要如何使 用搜索引擎这个外部工具即可。大模型可以在搜索结果上做进一步的信息筛选和优化,而搜索引 擎弥补了大模型的知识缺陷,实现了
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架 的措施。 2.3 综合治理措施方面。明确技术研发机构、服务提供者、用户、政府 部门、行业协会、社会组织等各方发现、防范、应对人工智能安全风险的措施 力, 确保基础设施和服务运行不中断。 (d)对于人工智能系统采用的芯片、软件、工具、算力和数据资源,应 高度关注供应链安全。跟踪软硬件产品的漏洞、缺陷信息并及时采取修补加固 措施,保证系统安全性。 4.2 针对人工智能应用安全风险 4.2.1 网络域风险应对 (a)建立安全防护机制,防止模型运行过程中被干扰、篡改而输出不可 信结果。 (b)应建立数据护栏,确保人工智能系统输出敏感个人信息和重要数据 南,完善伦理 审查制度。 5.5 强化人工智能供应链安全保障。推动共享人工智能知识成果,开 源人工智能技术,共同研发人工智能芯片、框架、软件,引导产业界建立开放 生态,增强供应链来源多样性,保障人工智能供应链安全性稳定性。 5.6 推进人工智能可解释性研究。从机器学习理论、训练方法、人机 交互等方面组织研究人工智能决策透明度、可信度、纠错机制等问题,不断提 高人工智能可解释性和可预测
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 研等领域理解消费者情感,优化产品和策略。 • 故事化数据呈现:借助o3mini将数据以 故事的形式呈现,增强数据的可读性和吸引力, 帮助公众理解复杂的科学和技术知识。 • 复杂数据模式识别:借助o3mini高效分 析复杂数据,帮助科学研究和工程领域发现 模式和规律,如天文学中的星系演化或地质 学中的地震数据分析。 多版本与模块化支持:目前提供三个版本(基础版、增 强版、专业版),能够灵活应对不同用户的综述需求。 工具内包括文献观点梳理、问题提出等功能模块,确保 用户在不同科研需求下得到充分支持。  增强版绘图功能:增强版具备绘图功能,可通过可视化 图示(如文献关键词共现图)直观展示综述内容,帮助 用户更好理解和呈现研究成果。  无数据检索:以现有真实数据库作为支撑,通过关键词 检索,自动搜集相关文献并生成综述报告,目前只支持  综述生成:点击生成综述,等待2-3分钟即可下载综述报告。 元知AI综述工具官网:https://yuanzhi.zeelin.cn/#/ 选择版本:根据需求选择工具的四个版本,包括基础版、增强版、专业版(单图)、专业版(双图)。  文献导入:用户可从现有文献数据库中下载中英文数据后导入平台,或直接通过实时联网访问免费数据库 进行在线分析,操作简单便捷。  信息提取与分析:平台自动
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 TiDB v8.4 中文手册

    发版日期:2024 年 11 月 11 日 TiDB 版本:8.4.0 试用链接:快速体验 | 下载离线包 在 8.4.0 版本中,你可以获得以下关键特性: 分类 功能/增强 描述 可扩展性和性能 数据库管理和可观测性 4/br-pitr-manual#加密日志备份数据"> �→ 日志备份数据支持客户端加密(实验特性) 在上传日志备份到备份存储之前,你可以对日志备份数据进行加密, �→ 确保数据在存储和传输过程中的安全性。 2.2.1 功能详情 2.2.1.1 性能 • 新增 TSO 请求的并行批处理模式,降低获取 TSO 的延迟 #54960 #8432 @MyonKeminta 在 v8.4.0
    0 码力 | 5072 页 | 104.05 MB | 10 月前
    3
  • pdf文档 TiDB v8.5 中文手册

    发版日期:2024 年 11 月 11 日 TiDB 版本:8.4.0 试用链接:快速体验 | 下载离线包 在 8.4.0 版本中,你可以获得以下关键特性: 分类 功能/增强 描述 可扩展性和性能 数据库管理和可观测性 4/br-pitr-manual#加密日志备份数据"> �→ 日志备份数据支持客户端加密(实验特性) 在上传日志备份到备份存储之前,你可以对日志备份数据进行加密, �→ 确保数据在存储和传输过程中的安全性。 2.2.1 功能详情 2.2.1.1 性能 • 新增 TSO 请求的并行批处理模式,降低获取 TSO 的延迟 #54960 #8432 @MyonKeminta 在 v8.4.0
    0 码力 | 5095 页 | 104.54 MB | 10 月前
    3
  • pdf文档 TiDB v8.2 中文手册

    发版日期:2024 年 7 月 11 日 TiDB 版本:8.2.0 试用链接:快速体验 | 下载离线包 在 8.2.0 版本中,你可以获得以下关键特性: 分类 功能/增强 描述 稳定性与高可用 0 码力 | 4987 页 | 102.91 MB | 10 月前
    3
  • pdf文档 Service Mesh是下一代SDN吗:从通信角度看Service Mesh的发展

    图例说明 Pilot Mixer APP: Canary Deployment K8s API Server 管控规则 灰度发布 网格增强组件 原生组件 APP: Traffic Management APP ...产品化增强-服务注册发现 出于历史原因,我们使用了Kubernetes来部署服务,但并未使用Kubernetes内置的 服务发现功能。 Process Service-A Grained“ Services How to map multiple logic services inside one process to Istio service?产品化增强-兼容粗粒度的SOA类应用 Process Service-A Service-B Service-C Sidecar Process Process Service B Process 优化效果 • 200个服务的规模下,CPU占用率降低了一个数量级 • 服务数据变化同步时延从分钟级降低到秒级 • Consul调用导致的TIME_WAIT Sockets数量减少到个位级产品化增强-Ingress API Gateway K8S Ingress Load balancing SSL termination Virtual hosting Istio Gateway Load
    0 码力 | 27 页 | 11.99 MB | 6 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    Transformer 结构的优势 1. 高效的并行计算:摒弃循环结构,使计算速度大幅提升。 2. 更好的上下文理解:注意力机制可捕捉长文本中的远程依赖关系。 3. 良好的可扩展性:可适配更大规模模型训练,增强 AI 泛化能力。 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取 AI 知识,严禁拿此资料引流、出书、等形式的商业活动 Tuning),如下图11所示。通用强化学习训练过 程后,使得 R1 不仅在推理任务中表现卓越,同时在非推理任务中也表现出 色。但由于其能力拓展至非推理类应用,因此在这些应用中引入了帮助性 (helpfulness)和安全性(safety)奖励模型(类似于 Llama 模型),以优化 与这些应用相关的提示处理能力。 DeepSeek-R1 是训练流程的终点,结合了 R1-Zero 的推理能力和通用强化 学习的任务 DeepSeek-R1 中间推理模型生成:通过推理导向的强化学习(Reasoning-Oriented RL), 直接生成高质量的推理数据(CoT 示例),减少人工标注依赖。通用强化学 习优化:基于帮助性和安全性奖励模型,优化推理与非推理任务表现,构建 通用性强的模型。最终,DeepSeek-R1 将 R1-Zero 的推理能力与通用强化 学习的适应能力相结合,成为一个兼具强推理能力和任务广泛适应性的高
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
共 88 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
服务增强增强器社区介绍腾讯Kubernetes高性性能高性能网络技术揭秘使用eBPFIPVS优化K8s建明范建明2024中国开源开发开发者报告人工智能人工智能安全治理框架1.0清华大学DeepSeekDeepResearch科研TiDBv8中文手册ServiceMesh一代下一代SDN通信角度角度看发展图解10PDF
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩