人工智能安全治理框架 1.0手段,推动各方协同共治。 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 模等特点,人 工智能易受复杂多变运行环境或恶意干扰、诱导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机 密泄露,推理过程不可信、决策输出错误,甚至运行故障。 (e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, (a)违规收集使用数据风险。人工智能训练数据的获取,以及提供服务 与用户交互过程中,存在未经同意收集、不当使用数据和个人信息的安全风险。 (b)训练数据含不当内容、被 “投毒” 风险。训练数据中含有虚假、偏见、 侵犯知识产权等违法有害信息,或者来源缺乏多样性,导致输出违法的、不良 的、偏激的等有害信息内容。训练数据还面临攻击者篡改、注入错误、误导数 据的“投毒”风险,“污染”模型的概率分布,进而造成准确性、可信度下降。0 码力 | 20 页 | 3.79 MB | 1 月前3
Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.6. 将错误信息输出到标准错误而不是标准输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13 Rust 程序设计语言的本质实际在于 赋能(empowerment):无论你现在编写的是何种代码, Rust 能让你在更为广泛的编程领域走得更远,写出自信。(这一点并不显而易见) 举例来说,那些“系统层面”的工作涉及内存管理、数据表示和并发等底层细节。从传统角度来 看,这是一个神秘的编程领域,只为浸润多年的极少数人所触及,也只有他们能避开那些臭名 昭著的陷阱。即使谨慎的实践者,亦唯恐代码出现漏洞、崩溃或损坏。 Rust 来提升信心。例如,在 Rust 中引入并行是相 对低风险的操作,因为编译器会替你找到经典的错误。同时你可以自信地采取更加激进的优 化,而不会意外引入崩溃或漏洞。 但 Rust 并不局限于底层系统编程。它表达力强、写起来舒适,让人能够轻松地编写出命令行 应用、网络服务器等各种类型的代码——在本书中就有这两者的简单示例。使用 Rust 能让你 把在一个领域中学习的技能延伸到另一个领域:你可以通过编写网页应用来学习0 码力 | 562 页 | 3.23 MB | 1 月前3
共 2 条
- 1













