人工智能安全治理框架 1.0
对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 对训练数据进行严格筛选,确保不包含核生化导武器等高危领域敏 感数据。 (d) 训练数据中如包含敏感个人信息和重要数据,应加强数据安全管理, 符合数据安全和个人信息保护相关标准规范。 (e) 使用真实、准确、客观、多样且来源合法的训练数据,及时过滤失 效、错误、偏见数据。 (f) 向境外提供人工智能服务,应符合数据跨境管理规定。向境外提供 人工智能模型算法,应符合出口管制要求。 4.1.3 系统安全风险应对 (a)对0 码力 | 20 页 | 3.79 MB | 28 天前3Rust 程序设计语言 简体中文版 1.85.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7. 使用包、Crate 和模块管理不断增长的项目 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 程序设计语言的本质实际在于 赋能(empowerment):无论你现在编写的是何种代码, Rust 能让你在更为广泛的编程领域走得更远,写出自信。(这一点并不显而易见) 举例来说,那些“系统层面”的工作涉及内存管理、数据表示和并发等底层细节。从传统角度来 看,这是一个神秘的编程领域,只为浸润多年的极少数人所触及,也只有他们能避开那些臭名 昭著的陷阱。即使谨慎的实践者,亦唯恐代码出现漏洞、崩溃或损坏。 Rust 绝编译包含这些难以察觉的错误的代码,包括并发错误。通过与编译器合作,团队可以将时间 集中在程序逻辑上,而不是追踪 bug。 Rust 也为系统编程世界带来了现代化的开发工具: • Cargo 是内置的依赖管理器和构建工具,它能轻松增加、编译和管理依赖,并使依赖在 Rust 生态系统中保持一致。 • Rustfmt 格式化工具确保开发者遵循一致的代码风格。 • rust-analyzer 为集成开发环境(IDE)提供了强大的代码补全和内联错误信息功能。0 码力 | 562 页 | 3.23 MB | 9 天前3
共 2 条
- 1