Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6. 枚举和模式匹配 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 15.5. RefCell与内部可变性模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 18.3. 面向对象设计模式的实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 19. 模式与模式匹配 . . . . . . . . . . . . . . . 0 码力 | 562 页 | 3.23 MB | 29 天前3
 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502人类训练数据接近枯竭  合成数据无法创造新知识  推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式  大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专  除了 技术创新——让过去做不到的事情可以做到  体验创新——让使用起来很难很复杂的东西变得很简单易用  市场推广创新——让过去很难得到的东西可以得到  商业模式创新——让过去很昂贵的东西变得很便宜甚至免费 DeepSeek正是符合这四种创新模式的完美例子 25 颠覆式创新的四种方式政企、创业者必读 DeepSeek-R1突破了大模型Scaling Law瓶颈 导致大模型悲观论 认为大模型的能力无法进一步得到质的提升 DeepSeek颠覆式创新——开源 34政企、创业者必读 成本的急剧降低  DeepSeek可适配国产硬件,促进国产硬件发展  DeepSeek的优化降低对推理硬件的要求,减少推理成本  训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大  无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子  公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机  小模型可0 码力 | 76 页 | 5.02 MB | 6 月前3
 人工智能安全治理框架 1.0使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 (a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻 辑复杂,推理过程属黑灰盒模式,可能导致输出结果难以预测和确切归因,如 有异常难以快速修正和溯源追责。 (b)偏见、歧视风险。算法设计及训练过程中,个人偏见被有意、无意引入, 或者因训练数据集质量问题,导致算法设计目的、输出结果存在偏见或歧视, 提高攻击效率,包括挖掘利用漏洞、破解密码、生成恶意代码、发送钓鱼邮件、 网络扫描、社会工程学攻击等,降低网络攻击门槛,增大安全防护难度。 (e)模型复用的缺陷传导风险。依托基础模型进行二次开发或微调,是 常见的人工智能应用模式,如果基础模型存在安全缺陷,将导致风险传导至下 游模型。 3.2.2 现实域安全风险 (a)诱发传统经济社会安全风险。人工智能应用于金融、能源、电信、交通、 民生等传统行业领域,如自动驾驶、智能诊疗等,模型算法存在的幻觉输出、 区 别对待,带来系统性、结构性的社会歧视与偏见。同时,拉大不同地区人工智 能鸿沟。 (b)挑战传统社会秩序的风险。人工智能发展及应用,可能带来生产工具、 生产关系的大幅改变,加速重构传统行业模式,颠覆传统的就业观、生育观、 教育观,对传统社会秩序的稳定运行带来挑战。 (c)未来脱离控制的风险。随着人工智能技术的快速发展,不排除人工 智能自主获取外部资源、自我复制,产生自我意识,寻求外部权力,带来谋求0 码力 | 20 页 | 3.79 MB | 1 月前3
 Tornado 6.5 Documentationflag; if both are specified the individual flag takes precedence): • autoreload=True: The app will watch for changes to its source files and reload itself when anything changes. This reduces the need to changes (but see also the command-line interface in main) tornado.autoreload.watch(filename: str) → None Add a file to the watch list. All imported modules are watched by default. tornado.autoreload.add_reload_hook(fn: ExpectLog context manager. Parameters • logger – Logger object (or name of logger) to watch. Pass an empty string to watch the root logger. • regex – Regular expression to match. Any log entries on the specified0 码力 | 272 页 | 1.12 MB | 3 月前3
 Tornado 6.5 Documentationflag; if both are specified the individual flag takes precedence): autoreload=True: The app will watch for changes to its source files and reload itself when anything changes. This reduces the need to Utilities tornado.autoreload — Automatically detect code changes in development start() wait() watch() add_reload_hook() main() tornado.concurrent — Work with Future objects Future run_on_executor() main)tornado.autoreload.watch(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None] Add a file to the watch list. All imported0 码力 | 437 页 | 405.14 KB | 3 月前3
 OpenAI - AI in the Enterprisehappen within hours. Kaitlin Elliott Head of Firmwide Generative AI Solutions To find out more, watch Morgan Stanley: Shaping the Future of Financial Services and ask us about our Eval Frameworks. 7 experts across domains, deep research saved an average of 4 hours per complex task. For more detail, watch BBVA puts AI into the hands of every team. 17 AI in the EnterpriseLesson 6 Unblock your developers0 码力 | 25 页 | 9.48 MB | 6 月前3
 julia 1.13.0 DEVon how to use this tool, please see the following talk from JuliaCon 2022: https://www.youtube.com/watch?v=BFvpw Allocation Profiler ExampleCHAPTER 33. PROFILING 444 In this simple example, we use PProf REPL, ; can be used to suppress output. ; also has a different meaning within [ ], something to watch out for. ; can be used to separate expressions on a single line, but are not strictly necessary in StatStruct && prev == current) to detect notification of changes to the mtime or inode. However, using watch_file for this operation is preferred, since it is more reliable and efficient, although in some situations0 码力 | 2058 页 | 7.45 MB | 3 月前3
 Julia 1.12.0 RC1on how to use this tool, please see the following talk from JuliaCon 2022: https://www.youtube.com/watch?v=BFvpw Allocation Profiler ExampleCHAPTER 33. PROFILING 445 In this simple example, we use PProf REPL, ; can be used to suppress output. ; also has a different meaning within [ ], something to watch out for. ; can be used to separate expressions on a single line, but are not strictly necessary in StatStruct && prev == current) to detect notification of changes to the mtime or inode. However, using watch_file for this operation is preferred, since it is more reliable and efficient, although in some situations0 码力 | 2057 页 | 7.44 MB | 3 月前3
 Julia 1.12.0 Beta4on how to use this tool, please see the following talk from JuliaCon 2022: https://www.youtube.com/watch?v=BFvpw Allocation Profiler ExampleCHAPTER 33. PROFILING 444 In this simple example, we use PProf REPL, ; can be used to suppress output. ; also has a different meaning within [ ], something to watch out for. ; can be used to separate expressions on a single line, but are not strictly necessary in StatStruct && prev == current) to detect notification of changes to the mtime or inode. However, using watch_file for this operation is preferred, since it is more reliable and efficient, although in some situations0 码力 | 2057 页 | 7.44 MB | 3 月前3
 Julia 1.12.0 Beta3on how to use this tool, please see the following talk from JuliaCon 2022: https://www.youtube.com/watch?v=BFvpw Allocation Profiler ExampleCHAPTER 33. PROFILING 444 In this simple example, we use PProf REPL, ; can be used to suppress output. ; also has a different meaning within [ ], something to watch out for. ; can be used to separate expressions on a single line, but are not strictly necessary in StatStruct && prev == current) to detect notification of changes to the mtime or inode. However, using watch_file for this operation is preferred, since it is more reliable and efficient, although in some situations0 码力 | 2057 页 | 7.44 MB | 3 月前3
共 19 条
- 1
 - 2
 













