Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 12.4. 采用测试驱动开发完善库的功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 21. 最后的项目:构建多线程 web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 21.1. 建立单线程 web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 22.4. D - 实用开发工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 1 月前3
人工智能安全治理框架 1.0………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架 的措施。 2.3 综合治理措施方面。明确技术研发机构、服务提供者、用户、政府 部门、行业协会、社会组织等各方发现、防范、应对人工智能安全风险的措施 手段,推动各方协同共治。 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 (a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻0 码力 | 20 页 | 3.79 MB | 1 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502慢思考能力 传统软件是辅助人的工具,Agent是能够自主工作的数字员工,是新的生产力政企、创业者必读 22 DeepSeek出现之前的十大预判 之九 开源效果追赶上闭源 技术开放,吸引广大开发人员和用户使用 很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小 美国预训练堆算 DeepSeek颠覆式创新——用户体验 32 ——掀起新一轮AI科普教育 认知决定行动,这场全民AI科普对推动中国AI发展功不可没政企、创业者必读 开源改变行业格局,建立强大生态 开源战胜闭源,促使全球公司、开发者等转到开源 建立强大生态,成为全球人工智能根技术,无推广情况下各国 政府、企业、云厂商纷纷接入,获得全球最大影响力 改变中美竞争格局:美国是闭源封闭垄断思路,中国领导开源 文化,加速中国领先地位 因为开源透明可信任,企业和 政府可做大量私有化部署 一个开源产品获得突破之后,全世界都能分享成果,结束中国百模大 战,节省大量成本 很多公司参与开源,帮助改进产品,很多人基于DS生态开发应用产 品,增加影响力,人人为我,我为人人 技术开放,对人工智能行业形成蓬勃发展,寒武纪大爆炸,推动AGI 行业发展 DeepSeek颠覆式创新——开源 34政企、创业者必读 成本的急剧降低0 码力 | 76 页 | 5.02 MB | 6 月前3
Tornado 6.5 Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.2 Web framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Python Module Index 257 Index 259 iiiTornado Documentation, Release 6.5.1 Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed. By using non-blocking world” example web app for Tornado: import asyncio import tornado class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, world") def make_app(): return tornado.web.Application([0 码力 | 272 页 | 1.12 MB | 3 月前3
Tornado 6.5 DocumentationTornado [https://www.tornadoweb.org] is a Python web framework and asynchronous networking library, originally developed at FriendFeed [https://en.wikipedia.org/wiki/FriendFeed]. By using non-blocking s] Hello, world Here is a simple “Hello, world” example web app for Tornado: import asyncio import tornado class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello write("Hello, world") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) async def main(): app = make_app() app.listen(8888) await asyncio.Event().wait()if0 码力 | 437 页 | 405.14 KB | 3 月前3
Dynamic Model in TVMAmazon Web Services, Inc. or its Affiliates. All rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services while loop Limitation of TVM/graph runtime ● Cannot compile and run dynamic models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim Graph dispatch for a (sub-)graph In collaboration with Jared Roesch, Zhi Chen, Wei Chen© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. “Any” in Relay typing Any: represent an unknown0 码力 | 24 页 | 417.46 KB | 6 月前3
Bring Your Own Codegen to TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You... Design and manufacture a deep learning chip which achieves amazing performance on widely-used operators Suppression (NMS) is too new to be supported by your chip But NMS is supported by TVM!© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Let TVM Be the Compiler of Your Chip Your0 码力 | 19 页 | 504.69 KB | 6 月前3
TVM Meetup: Quantization© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Animesh Jain Amazon SageMaker Neo Compilation of Quantized Models in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates 𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = 𝑠𝑐𝑎𝑙𝑒 ∗ (𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡)© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantization in TVM • Quantization within pre-quantized graph in TFLite or MxNet • Use high-level wrapper ops of QNN dialect© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. TVM Overview Framework Graph Mxnet TF ….0 码力 | 19 页 | 489.50 KB | 6 月前3
Trends Artificial Intelligence
one can make. The magic of watching AI do your work for you feels like the early days of email and web search – technologies that fundamentally changed our world. The better / faster / cheaper impacts 1993 with release of the World Wide Web (WWW) into the public domain, which allowed users to create websites; however, Tim Berners-Lee invented the World Wide Web in 1989, per CERN. Source: Google, USA Morgan Stanley, ‘Google and Meta: AI vs. Fundamental 2H Debates’ (7/23), Our World in Data, other web sources per MS Years to 50% Adoption of Household Technologies in USA, per Morgan Stanley Consumer0 码力 | 340 页 | 12.14 MB | 5 月前3
Gluon Deployment© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploying GluonCV models using TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon with TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploy GluonCV Models https://arxiv.org/pdf/1907.02154.pdf© 2019, Amazon Web Services, Inc. or its Affiliates Amazon Trademark Overall Performance AWS DeepLens Acer aiSage NVIDIA Jetson Nano© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Effects of Vision-specific0 码力 | 8 页 | 16.18 MB | 6 月前3
共 27 条
- 1
- 2
- 3













