Rust 程序设计语言 简体中文版 1.85.0# Windows 是 .\main.exe 如果这里的 main.rs 是上文所述的 “Hello, world!” 程序,那么在终端上就会打印出 Hello, world!。 如果你更熟悉动态语言,如 Ruby、Python 或 JavaScript,则可能不习惯将编译和运行分为两 个单独的步骤。Rust 是一种 预编译静态类型(ahead-of-time compiled)语言,这意味着你可 bound 让我们能够使用泛型类型参数来减少重复,而且能够向编译器明确指定泛 型类型需要拥有哪些行为。然后编译器可以利用 trait bound 信息检查代码中所用到的具体类 型是否提供了正确的行为。在动态类型语言中,如果我们调用了一个未定义的方法,会在运行 时出现错误。Rust 将这些错误移动到了编译时,甚至在代码能够运行之前就强迫我们修复问 题。另外,我们也无需编写运行时检查行为的代码,因为在编译时就已经检查过了。这样既提 信息的子串。我们可以指定期望的整个 panic 信息,在这个例子中是 Guess value must be less than or equal to 100, got 200 。信息的选择取决于 panic 信息 有多独特或动态,和你希望测试有多准确。在这个例子中,错误信息的子字符串足以确保函数 在 else if value > 100 的情况下运行。 为了观察带有 expected 信息的 should_panic0 码力 | 562 页 | 3.23 MB | 1 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502• 高炉温度分布 • 高炉燃料比监测 • 高炉精准出铁预测 • 高炉炉况诊断 • 高炉燎铁能耗预测 • 高炉在含量智能预监 • 铁包动态调度算法(铁包 跟踪) • 烟气余热回收控制 • 部署工艺模型分析诊断 • 能源诊断分析 • 建设质量工艺动态设计 优化 • 堆堵料异常检测 • 炼铁原料混匀过程调度 优化 • 风机风压参数实时捕捉 和分析检验 • ·计算最佳工艺参数 • 炼钢工序物料属性检测 • 钢包吊钩姿态监测 • 钢包温度远程智能监测 • 钢包坐罐过程识别 • 钢包挂罐过程识别 • ·转炉吹氧自动控制 • 炼钢现场生产安全态势感知与预警 • 炼钢过程智能调度 • 能源动态管控 • 碳资源智能分析 • 电弧炉炼钢尾气检测与控制 • 钢包内渣状态识别 • 渣罐残留水识别 • 钢包挂钩挂实确认 • 钢包内渣状态识别 • 渣罐残留水识别 • 钢包挂钩挂实确认 • 热轧管材表面质检 • 钢管识别跟踪 • 铸管外表面缺陷自动检测 • 铸管内壁缺陷自动检测 • 轧钢含油污泥油-水-固三相比例及成分分析 • 坯料库行车智能调度 • (棒材)多维度轧件堆拉关系分析 • 轧钢动态调度算法 • 产品质量在线控制无损检测 • 无缝钢管芯棒表面质检 • 无缝钢管制品芯棒插偏检测 • 冷轧带材精轧机架间钢带异常识别 • 冷轧带材机架间板形异常识别 • 带材表面缺陷自动检测 • 带材卷取异常检测0 码力 | 76 页 | 5.02 MB | 6 月前3
人工智能安全治理框架 1.0人工智能安全治理框架 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。0 码力 | 20 页 | 3.79 MB | 1 月前3
Real-Time Unified Data Layers:
A New Era for Scalable Analytics,
Search, and AIacross distributed systems. High-performance querying for analytics, search, and AI workloads at scale. SQL simplicity to unify access across divers data types, reducing complexity in querying distributed datasets execute complex queries on very large data sets in the sub-second range. All with the simplicity of SQL. Optimizing for AI & Search is Difficult Optimizing for both structured analytics, full-text search complexity, storage costs, and maintenance overhead by consolidating disparate systems. The native SQL support also makes it simple to use as it provides a single and easy way to query the data. 4. Why0 码力 | 10 页 | 2.82 MB | 5 月前3
DevOps Meetuptechnology under the sun Solaris, Windows, Linux Apache, IIS, TCServer, etc. Oracle, DB2, SQL Server How we got better We read and we studied. Created a self-improvement project 2 week0 码力 | 2 页 | 246.04 KB | 6 月前3
Trends Artificial Intelligence
Azure AI Foundry expansion • NLWeb • Model Context Protocol (MCP) integration • Entra Agent ID • SQL Server 2025 • Windows Subsystem for Linux Open- Source • GitHub Copilot Chat Extension • Aurora0 码力 | 340 页 | 12.14 MB | 5 月前3
julia 1.10.10missing object, which is the singleton instance of the type Missing. missing is equivalent to NULL in SQL and NA in R, and behaves like them in most situations. 20.1 Propagation of Missing Values missing This follows the well-established rules of three-valued logic which are implemented by e.g. NULL in SQL and NA in R. This abstract definition corresponds to a relatively natural behavior which is best explained Nothing} arguments or fields. To represent missing data in the statistical sense (NA in R or NULL in SQL), use the missing object. See the Missing Values section for more details.CHAPTER 37. FREQUENTLY ASKED0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.10.9missing object, which is the singleton instance of the type Missing. missing is equivalent to NULL in SQL and NA in R, and behaves like them in most situations. 20.1 Propagation of Missing Values missing This follows the well-established rules of three-valued logic which are implemented by e.g. NULL in SQL and NA in R. This abstract definition corresponds to a relatively natural behavior which is best explained Nothing} arguments or fields. To represent missing data in the statistical sense (NA in R or NULL in SQL), use the missing object. See the Missing Values section for more details.CHAPTER 37. FREQUENTLY ASKED0 码力 | 1692 页 | 6.34 MB | 3 月前3
Julia 1.11.4missing object, which is the singleton instance of the type Missing. missing is equivalent to NULL in SQL and NA in R, and behaves like them in most situations. 21.1 Propagation of Missing Values missing This follows the well-established rules of three-valued logic which are implemented by e.g. NULL in SQL and NA in R. This abstract definition corresponds to a relatively natural behavior which is best explained Nothing} arguments or fields. To represent missing data in the statistical sense (NA in R or NULL in SQL), use the missing object. See the Missing Values section for more details. In some languages, the0 码力 | 2007 页 | 6.73 MB | 3 月前3
Julia 1.11.5 Documentationmissing object, which is the singleton instance of the type Missing. missing is equivalent to NULL in SQL and NA in R, and behaves like them in most situations. 21.1 Propagation of Missing Values missing This follows the well-established rules of three-valued logic which are implemented by e.g. NULL in SQL and NA in R. This abstract definition corresponds to a relatively natural behavior which is best explained Nothing} arguments or fields. To represent missing data in the statistical sense (NA in R or NULL in SQL), use the missing object. See the Missing Values section for more details. In some languages, the0 码力 | 2007 页 | 6.73 MB | 3 月前3
共 16 条
- 1
- 2













