PostgreSQL 查询优化器解析0 码力 | 37 页 | 851.23 KB | 1 年前3
云原生数据库PieCloudDB 性能优化之路郭峰 拓数派 云原生数据库PieCloudDB 性能优化之路 打造立足于国内 基础数据计算领域的世界级高科技创新驱动机构 杭州拓数派科技发展有限公司(又称“OpenPie”),以“Data Computing for New Discoveries”「数据计算,只为新发现」为使命, 成立后的短短10个月时间内,完成了包括头部产业基金、东吴证券、元 禾重元和政府科创平台在内的连续三轮战略融资。 PostgreSQL优化器简介 PieCloudDB优化器之分布式特性简介 PieCloudDB优化器之云原生特性简介 Q/A Contents 录 目 01 • 预处理阶段 • 通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫 以上每一步操作都会产生一个或多个路径 • 为每个路径添加LockRows, Limit, ModifyTable • 把最优路径转换为查询计划 • 对最优计划进行一些调整 02 • PieCloudDB优化器拓展了PostgreSQL优化器,使其适用于分布式架构 • 引入了Motion的概念,使得数据可以在不同的工作节点之间移动 • 利用Motion产生分布式的查询计划 • 这些分布式的查询计划会被分为更小的单元,并被分发到不同的工作节点中并行执行0 码力 | 26 页 | 711.44 KB | 1 年前3
大模型时代下向量数据库的设计与应用大模型时代下向量数据库的设计与应用 个人简介 目前在拓数派负责向量数据库PieCloudVector产品,聚焦于大模型 与大数据领域。拥有多年数据库内核研发和配套解决方案架构经验, 在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 开发和性能优化等实践经验。 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 通过信通院测试 案例分析 - 东吴证券秀财gpt • 采用自研大模型东吴秀财GPT + LangChain开发框架 + PieCloudVector向量数据库构建了AIGC应 用平台,接入了交易应用的结构化数据和非结构化数据,其中非结构化数据主要是文本类数据 下一步展望 • GraphRAG 欢迎关注我们! 麦思博(msup)有限公司是一家面向技术型企业的培训咨询机构,携手2000余位0 码力 | 28 页 | 1.69 MB | 1 年前3
πDataCS赋能工业软件创新与实践⼤模型数据计算系统,以云原⽣技术重构数据存储和计算,⼀份数据,多引擎数据计算,AI数学模型、数据和 计算三者互为增强,全面升级⼤数据系统⾄⼤模型时代 ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 软件优化 + 新硬件(FPGA)加速,实现数据全链路的性能飞跃, 让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024 OpenPie 态合作伙伴都可以直接提供技术服务,7 * 24的安⼼保障。 @2024 OpenPie. All rights reserved. OpenPie Confidential PieCloudVector与LLM在私域知识库领域的应用实践路径 π D a t a C S 优 势 2 : 全 面 支 持 ⼤ 语 ⾔ 基 础 模 型 和 私 域 数 据 结 合 做 垂 直 应 用 @2024 OpenPie. All rights TDE技术保证了所有数据在落盘前完成加密,服务 器⽆感知技术(Serverless)利用云上⽆限计算资源 和弹性保证了虚拟数仓永远在线可用,S3存储和跨 云灾备能⼒保证了永不丢数。 数据计算资源按需扩缩容,实现计算资源配置最优化, 提升数仓的敏捷性和弹性,打开⽆限数据计算空间, 支撑更⼤模型所需的数据和计算。更好地赋能业务发 展并⾛向绿⾊。 降低数仓硬件和管理成本 提升数据计算资源利用效益 坚如磐⽯ | ⾼安全 ⾼在线0 码力 | 36 页 | 4.25 MB | 1 年前3
云原生虚拟数仓PieCloudDB Database产品白皮书4 5 6 7 7 8 11 13 15 16 目 录 行 业 背 景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈(Global Datasphere)呈指数级递增, IDC预测全球数据圈将于 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 5 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越多的企业将应用向云上迁移,而越来越多的数据也流向云上。公有云带来了众多优势: 每天有数个小的计算任务,需要数个节点 每周有一个中等计算任务,需要数十个节点 每月有一个大的计算任务,需要数千个节点 无限空间: 。 PieCloudDB 为企业构建「坚如磐石」的虚拟数仓,以云资源最优化配置实现无限数据计算可能,基于新一代数仓虚 拟化,提供云数仓智能化解决方案,助力企业建立以数据资产为核心的竞争壁垒。 7 PieCloudDB 产品架构 PieCloudDB 整体架构分为三个层次,包括基础设施层、数据处理层及数据应用层。详细阐述如下: 基础设施层 基础设施层为 PieCloudDB0 码力 | 17 页 | 2.02 MB | 1 年前3
PieCloudDB Database 产品白皮书 PiecloudDB 基于 eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 百岗 行业背景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈 (Global Datasphere) 呈指数级递增, IDC预测全球数据圈将于 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越多的企业将应用向云上迁移,而越来越多的数据也流向云上。公有云带来了众多优势: 时可以申请/释放的计算资源 霹 无限的计算资源 亿-曾 无限的存信池 C 二 低价的对象存储 Openpie | PiecloudDB 分布式技术,旨在为企业提供包含实时处理、 移级扩缩容、弹性计算、集成数据分析等强大功能的云上数据存储和计算引擎,助力企业实现数据价值最大化。 pieCloudDB 为企业构建坚如般石的虚拟数仓,以云资源最优化配置实现无限数据计算可能,基于新一代数仓虚拟 化,提供云数仓智能化解决方案,助力企业建立以数据资产为核心的竞争整垒。 Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算)0 码力 | 17 页 | 2.68 MB | 1 年前3
AGI 趋势下的云原生数据计算系统基于PieDataCS的用户案例实 践,从基础的数据底座到 AIGC应用全场景覆盖。 04 中国AGI发展趋势 中国AGI市场融资非常活跃,AGI顶级人才非常欠缺,整 个市场将长期保持快速增长态势。 01 中国AGI发展趋势 l InfoQ研究中心预计,2030年中国AGI应用市场规模将达到4543.6亿元人民币。 l 2024-2027中国AGI应用市场将经历过速启动期;每年市场增速都将超过100% 持在50%以上。并于2027年突破千亿人民币市场规模。 l InfoQ研究中心认为,中国AGI应用市场规模发展将由企业市场引领主导,到2030年企业市场规模预计达到3024.6亿元人民币。 国内AGI市场增长趋势预测 说明:数据来自InfoQ研究中心 中国AGI发展趋势 l 中国AGI市场自下向上分为基础设施层、模型层、中间层和应用层四层,这四层结构共同构成了中国AGI市场的技术框架。 国内AGI市场分层 u 首创云原生eMPP架构 u 国内数仓虚拟化技术提出者 云原生数据计算系统 PieDataCS数据底座为AI大模型赋能 云原生数据计算系统 虚拟数仓引擎设计 云原生数据计算系统 分布式优化器设计 云原生数据计算系统 结构化和半结构化数据同步 云原生数据计算系统 向量计算引擎设计 云原生数据计算系统 多模态数据共享 AIGC全生命周期管理 基于PieCloudML,为企业构建统一的MaaS框架和0 码力 | 26 页 | 2.84 MB | 1 年前3
兼容龙蜥的云原生大模型数据计算系统:πDataCS系统至大模型时代,使得自主可 控的大模型数据计算系统保持全球领先,成为AI的基础科技底座的同时,开启AI技术的新范式。 πDataCS旨在助力企业优化计算瓶颈、充分利用和发挥数据规模优势,构建核心技术壁垒,让大模 型技术全面赋能行业AI场景应用,助力合作伙伴成功,为企业创造更大的商业价值。 全 球 数 据 计 算 系 统 引 领 者 • 归国后在美国500强EMC旗下创建了Greenplum中国,随后在2013年在Paul 24的安心保障。 πDataCS 优势1 :全面升级Hadoop大数据和Greenplum数仓至云原生数据平台 PieCloudVector与LLM在私域知识库领域的应用实践路径 πDataCS优势2: 全面支持大语言基础模型和私域数据结合做垂直应用 πDataCS优势3 :云原生下eMPP计算引擎全面颠覆MPP技术,大模型数据计算新范式 SQL语言实现的结构化数据上的模型计算 打破企业数据孤岛,整合企业所有表格类数据资源 TDE技术保证了所有数据在落盘前完成加密,服务器 无感知技术(Serverless)利用云上无限计算资源和 弹性保证了虚拟数仓永远在线可用,S3存储和跨云灾 备能力保证了永不丢数。 数据计算资源按需扩缩容,实现计算资源配置最优化, 提升数仓的敏捷性和弹性,打开无限数据计算空间,支 撑更大模型所需的数据和计算。更好地赋能业务发展并 走向绿色。 降低数仓硬件和管理成本 提升数据计算资源利用效益 坚如磐石 | 高安全 高在线0 码力 | 29 页 | 7.46 MB | 1 年前3
云原生虚拟数仓 PieCloudDB 的架构和关键模块实现OpenPie. All rights reserved. OpenPie Confidential • 全面的逻辑优化(谓词下推,子查询子链接提升,外连接消除) • 纯粹基于代价的物理优化 • 全面的数据分布特性描述,分布式代价估算,高效分布式表连接 • 多阶段的聚集 专门为复杂查询设计的优化器 分布式环境高效执行器 • 多阶段执行模型 • 流式数据重分布 @2022 OpenPie. All bquery都要被执行 一次,Query可能永远跑不出结果 @2022 OpenPie. All rights reserved. OpenPie Confidential CTE在SQL中的应用非常广泛(TPC-DS有48个query包含CTE) CTE用于SQL的重用 在Postgres中谓词不会被下推到CTE中,这会影响性能 PieCloudDB实现了CTE的聚集下推 @20220 码力 | 43 页 | 1.14 MB | 1 年前3
PieCloudDB Database V2.1 版本说明10 月 内 核 • 聚集下推功能得到增强:通过把聚集操作下推到连接操作之前去执行,极大的减 少连接操作需要处理的数据量,使得查询性能显著提升。 • 实现了 Block Skipping 的优化机制:数据库运行查询语句时,通过计算每个块 (block)中列聚集信息,在执行期间跳过非必要的数据块,减少数据读取量提高查询性 能。 • 极速 Analyze(Smart Analyze): PieCloudDB Vacuum 优化:在元数据层通过快速过滤不需要 vacuum 的数据,从而实现 vacuum 加速。 • 存储引擎 简墨(JANM) 异常处理的优化: 避免各种异常情况下数据残留。 • 简墨(JANM)分布式处理增强:更高效的元数据采集和分发,提升用户查询响 应时间,降低系统负载 • 简墨(JANM)动态分配读取文件增强 dispatch 性能:此优化将动态的分配要 • 原生格式存储:在 HDFS/NAS 系统上支持原生存储格式。 • 对 Orca 的支持:PieCloudDB 支持查询优化器 Orca。Orca 是一款开源的、基 于 Cascades 模型的模块化查询优化器,帮助用户对 SQL 进行优化,生成高效的查询计 划。 • 支持超大数据量字段 • 支持快速 ETL/ELT: Kafka 流数据导入支持,copy0 码力 | 3 页 | 257.15 KB | 1 年前3
共 19 条
- 1
- 2













