积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(14)PieCloudDB(14)

语言

全部中文(简体)(14)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 14 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PieCloudDB Database 社区版集群安装部署手册 V2.1

    .............................................................................. 39 5. 外部工具或者应用连接配置 ................................................................................................ ...................................................................................... 40 5.4 配置连接访问 ................................................................................................ 24.31.156 备注: l 基于 K8S 环境搭建 PieCloudDB 集群。 l 推荐服务器资源不低于 8C/16GB/300GB。 l 一些镜像和组件默认在根目录下,所以操作系统的根目录要求不小于 150GB。 l 所有服务器需要配置 yum,且能够连接 Internet。 l 部署方案有两种,请根据实际情况选择: Ø 本地无 K8S 环境和对象存储,请选择第二章节《PieCloudDB
    0 码力 | 42 页 | 1.58 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 MPP(大规模并行计算)架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录, MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1亿条记录。数据计算时,所有机器同时并行计算,理论上最高可以 把计算时间降低到单机部署的 1/n(n为机器数量),节省了海量数据的处理时间。 整体架构分为三个层次,包括基础设施层、数据处理层及数据应用层。详细阐述如下: 基础设施层 基础设施层为 PieCloudDB 提供计算资源、存储资源和网络资源,PieCloudDB 支持部署在物理服务器、虚拟机以及容 器中,同时也提供 PieCloudDB 公有云 SaaS 服务。 数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点、计算节点、存储节点以及云原生管控平台节 无状态节点(包括 Coordinator 和 Executer),主要负责接收用户请求和数据计算,支持 动态弹性伸缩,提供数据查询、执行计划、查询优化、数据加载、连接管理、并行计算以及资源隔离 等功能; 3. 存储节点: 存算分离架构,支持本地存储和云存储,推荐采用对象存储,提供数据压缩、数据加密、 多模存储以及多级缓存等功能;
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    很多受欢迎的数据库仓库均为分布式数据库,而典型 分布式数据库系统大多是 MPP (大规模并行计算) 架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录 MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1 录。数据计算时,所有机器同时并行计算,理论上最 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 提升数仓的敏捷性和弹性,助力企业降低数仓管理复杂度,实现数量级增加可计算数据空间的同时,数量级降低数仓 成本,打开无限数据计算空间,推进AVBI到下一个精度。PieCloudDB在eMPP分布式专利技术、服务器无感知 《(Serverless)及TDE等多项核心技术加持下,为企业构建高安全,高可靠,高在线 【坚如大石) 的云原生虚拟数仓, 助力企业实现数据价值最大化,更好地赋能业务发展并走向绿色,成为新一代Al数据计算基础设施的一个典范。 pieCloudDB 整体架构分为三个层次,包括基础设施层、数据处理层及数据应用层。详细阐述如下: 基础设施层为 pieCloudDB 提供计算资源、存储资源和网络资源,PieCloudDB 支持部署在物理服务器、庶拟机以及容 器中,同时也提供 PieCloudDB 公有云 Saa5 服务。 * ”数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点、计算节点、存储节点以及云原生平台节点等
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 πDataCS赋能工业软件创新与实践

    HDFS分布式⽂件系统 S3对象存储 其他Data Lake Bare-Metal IaaS资源 执⾏器 执⾏器 执⾏器 协调器 协调器 虚拟数仓1 执⾏器 协调器 虚拟数仓2 执⾏器 … 连接管理 查询优化器 资源隔离 向量化执⾏ 事务管理 执⾏计划 并⾏计算 ⾼可用 数据查询 数据加载 弹性伸缩 自定义函数 集群管控 元数据访问 业务数据读写 元数据映射 元数据: Ø 分布式KV,存储系统表 化, 提升数仓的敏捷性和弹性,打开⽆限数据计算空间, 支撑更⼤模型所需的数据和计算。更好地赋能业务发 展并⾛向绿⾊。 提升数据计算资源利用效益 TDE技术保证了所有数据在落盘前完成加密,服务器 ⽆感知技术(Serverless)利用云上⽆限计算资源和弹 性保证了虚拟数仓永远在线可用,S3存储和跨云灾备 能⼒保证了永不丢数。 坚如磐⽯ | ⾼安全 ⾼在线 ⾼可靠 MPP πPG reserved. OpenPie Confidential 云原⽣分布式优化器--达奇 多表连接的最优 顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归 CTE的优化 其他相关优化 聚集下推 通过把聚集操作下推到连接操作之前去执⾏,极⼤的减少连接操作需要处理的数据量,使得查询性能显 著提升。在很多场景下经过严格的测试,聚集下推会取得百倍或千倍的性能提升。
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database V2.1 版本说明

    Release Note 版本号:V2.1 发布日期:2022 年 10 月 内 核 • 聚集下推功能得到增强:通过把聚集操作下推到连接操作之前去执行,极大的减 少连接操作需要处理的数据量,使得查询性能显著提升。 • 实现了 Block Skipping 的优化机制:数据库运行查询语句时,通过计算每个块 (block)中列聚集信息,在执行期间跳过非必要的数据块,减少数据读取量提高查询性 全新的缓存机制:在 PieCloudDB 的计算层,各个计算节点针对元数据都设计了 多层缓存结构。 其中,针对元数据,PieCloudDB 实现了元数据层全新的缓存机制,有效减少了访问元 数据服务器带来的网络通信开销和元数据服务器的负载,提高元数据访问的速度。 • 可观察性增强:可得到更多的查询时系统的统计信息,包括元数据管理、S3 等。 • Vacuum 优化:在元数据层通过快速过滤不需要 vacuum
    0 码力 | 3 页 | 257.15 KB | 1 年前
    3
  • pdf文档 PieCloudDB 的云原生之路

    具 备数据共享的能力。 例如:投资管理系统和财务管理系统可以各自管理,按需分享。 计算:云上计算资源可以弹性分配。有查询计算任务的时候按需启动, 按照使用时间和规模计算成本,而不是购买大量服务器静置为不确定 的使用额外支付成本。 发现:在云上,对计算模型以更低成本提供指数级的存储和计算资源, 帮助甲方的业务模型发现新洞察或者提高精准度,从而建立竞争壁垒。 1 2 3 产 品 理 业 高 质 量 发 展 注 入 加 速 度 云 计 算 时 代 的 到 来 数 据 计 算 时 代 的 到 来 服务器整合,降低服务器硬件成本 云计算平台统一运维降低成本 服务器资源池可用空间增大 数据资源池可用空间增大 虚拟机动态迁移对硬件无感知 数仓整合,降低服务器硬件或者虚拟机成本 数据计算平台统一 运维降低成本 虚拟数仓数仓高在线 虚拟数仓动态 spinoff/retire 查询提供最优的查询计划。 • 分布式优化器 • 处理复杂 OLAP 查询 • 云原生优化器 PieCloudDB 优化器「达奇」 IvorySQL开源数据库社区 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 IvorySQL开源数据库社区 云原生优化器 聚集下推 预计算
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    具 备数据共享的能⼒。 例如:投资管理系统和财务管理系统可以各⾃管理,按需分享。 计算:云上计算资源可以弹性分配。有查询计算任务的时候按需启动, 按照使⽤时间和规模计算成本,⽽不是购买⼤量服务器静置为不确定 的使⽤额外⽀付成本。 发现:在云上,对计算模型以更低成本提供指数级的存储和计算资源, 帮助甲方的业务模型发现新洞察或者提高精准度,从⽽建⽴竞争壁垒。 1 2 3 产 品 理 业 高 质 量 发 展 注 入 加 速 度 云 计 算 时 代 的 到 来 数 据 计 算 时 代 的 到 来 服务器整合,降低服务器硬件成本 云计算平台统⼀运维降低成本 服务器资源池可⽤空间增⼤ 数据资源池可⽤空间增⼤ 虚拟机动态迁移对硬件⽆感知 数仓整合,降低服务器硬件或者虚拟机成本 数据计算平台统⼀ 运维降低成本 虚拟数仓数仓⾼在线 虚拟数仓动态spinoff/retire对计算资源⽆感知 云原生优化器 PieCloudDB Optimizer @2022 OpenPie. All rights reserved. OpenPie Confidential 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights reserved
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓 PieCloudDB 的架构和关键模块实现

    agg • Materialized view ANSI 标准 SQL 的完备支持 @2022 OpenPie. All rights reserved. OpenPie Confidential • 全面的逻辑优化(谓词下推,子查询子链接提升,外连接消除) • 纯粹基于代价的物理优化 • 全面的数据分布特性描述,分布式代价估算,高效分布式表连接 • 多阶段的聚集 专门为复杂查询设计的优化器
    0 码力 | 43 页 | 1.14 MB | 1 年前
    3
  • pdf文档 兼容龙蜥的云原生大模型数据计算系统:πDataCS

    彼时“理科实验班”(现元培项目)浸染在数学、物理、 计算机和经济学,获得物理经济学双学位。(北大报道)研究生就读卡内基梅隆大学。(InfoQ报道) • 归国前就职于美国Oracle公司数据库服务器技术部门,是Oracle Cloud Control的分布式调动引擎的 主要贡献者之一。 • 因为参与Pivotal的拆分创建、C轮融资和IPO成功,以及主导的Greenplum产品在全球范围的开源影 物理数仓整合到云原生数据计算平台,根据数据授权 动态创建虚拟数仓,打破数据孤岛,解决数据多副本 问题,帮助企业降低数仓管理复杂度,以更低的成本 实现存算资源在云上更灵活的配置。 TDE技术保证了所有数据在落盘前完成加密,服务器 无感知技术(Serverless)利用云上无限计算资源和 弹性保证了虚拟数仓永远在线可用,S3存储和跨云灾 备能力保证了永不丢数。 数据计算资源按需扩缩容,实现计算资源配置最优化, 提升 无法弹性扩缩向量化存储和计算的资源 • 在向量化计算的场景下,易用性和性能较差 • 对元数据变更的功能有限,导致了数据一致性等 问题 • 传统数据库存在的安全性、可靠性、在线性方面 的技术瓶颈 服务器无感知(Serverless)计算引擎 πCloudML (Beta) (大模型) 机器学习 私有云 Graph Parallel Computing Machine Learning Large
    0 码力 | 29 页 | 7.46 MB | 1 年前
    3
  • pdf文档 云原生数据库PieCloudDB 性能优化之路

    分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫描和连接之外的其他操作,例如聚集、排序等 • 后处理阶段 • 主要把前面的处理结果转换成执行器期望的形式 • 简化表达式 • 简化连接树 • 把 IN,EXISTS 等类型的子查询转换为半连接 • 提升子查询 • 把外连接转换为内连接 • 把外连接转换为反连接 • • 分发约束条件 • 构建等价类 • 收集外连接信息 • 消除无用连接 • … SELECT … FROM foo WHERE EXISTS (SELECT 1 FROM bar WHERE foo.a = bar.c); => SELECT … FROM foo *SEMI JOIN* bar ON foo.a = bar.c; SELECT * FROM foo JOIN (SELECT 42; 外连接的上层有严格的约束条件,且该约束条件限定了来自 nullable side 的某一变量为非 NULL 值 SELECT * FROM foo LEFT JOIN bar ON foo.a = bar.c WHERE bar.c IS NULL; => SELECT * FROM foo *ANTI JOIN* bar on foo.a = bar.c; 外连接本身有严格的连接条件,且该连接条件引用了来自
    0 码力 | 26 页 | 711.44 KB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
PieCloudDBDatabase社区集群安装部署手册V2原生虚拟数仓产品白皮皮书白皮书DataCS赋能工业软件创新实践版本说明虚拟化架构关键模块实现兼容模型数据计算系统据库数据库性能优化
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩