积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(15)PieCloudDB(15)

语言

全部中文(简体)(15)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 15 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 云时代下多数据计算引擎的设计与实现

    rights reserved. OpenPie Confidential @2024 OpenPie. All rights reserved. OpenPie Confidential 云时代下多数据计算引擎的设计与实现 郭罡 CTO 拓数派(OpenPie) @2024 OpenPie. All rights reserved. OpenPie Confidential 关 于 拓 数 派 核心团队来自于各大厂名校,有丰富的数据库(Greenplum,DB2,ClickHouse等)研发 和产业经验. • 产品 πDataCS:多计算引擎,包括自研分布式数据库PieCloudDB,自研分布式向量数据库 等. • PieCloudDB 存储底座是各计算引擎的载体. • 已落地或者正在落地:IoT、金融、新能源、医疗等行业. @2024 OpenPie. All rights reserved reserved. OpenPie Confidential 云时代 数据计算 多数据模态支持 广泛的生态支持 “一份数据,多引擎计算”的述求 让数据流动起来 @2024 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB 简介 一款云原生分布式 分析型数据库 • 元数据、用户数据、计算完全分离. • 用户数据(code
    0 码力 | 15 页 | 3.09 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    Gartner: 数据库中国市场指南 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型 分布式数据库系统大多是 MPP (大规模并行计算) 架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录 MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1 录。数据计算时,所有机器同时并行计算,理论上最 把计算时间降低到单机部署的 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 传统数据仓库架构 然而,随着数据量的不断尝升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 传统数据仓库的计算和存情是| 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一, 报表结! 传统数据仓库无法及时扩 导致大数据系统天 价值所带来的商业机会 用户在扩 必须同时扩 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木桶效应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖幸”整个集群的性能,导致查询速度变慢。 随卷时间的推移,业务的增长,企业往往需要在1-2年后
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    然而,随着数据量的不断攀升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 4 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 MPP(大规模并行计算)架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录, MPP 数据库会尝试在每台 PC 服务器的硬盘上分布 意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 琐。 木 桶 效 应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖垮”整个集群的性能,导致查询速度变慢。 随着时间的推移,业务的增长,企业往往需要在1-2年后 的元数据往往都是一样的。这种情况下,很多元数据 会在不同集群间存在不一致的版本信息。此外,如果企业需要做跨集群的访问,往往非常困难,会造成数据孤岛的存 在。 运 维 成 本 对于传统 MPP 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迭代迅速,相关人员需保持积极的知识更新意识。相关人才市场较小,人才匮乏。高昂的学习成本造
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 PieCloudDB:基于PostgreSQL的eMPP云原生数据库

    我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式MPP架构痛点 @2022 OpenPie. All rights reserved. OpenPie Confidential 一个云原生实时大数据平台 平台底层:eMPP 云原生分布式SQL数据库 友好的用户接口(WebSql, ODBC/JDBC driver等). 云原生 • 弹性计算资源(横向和纵向)、极速调整 • 共享用户数据(典型如廉价对象存储) • 共享元数据 • MPP架构:分布式,海量数据并行处理 @2022 OpenPie. All rights reserved. OpenPie Confidential Postgres 生态 PieCloudDB 重新打造 架构 @2022 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB 核心架构特点 元数据服 务 eMPP分布式 引擎 存储服务 透明数据加密 @2022 OpenPie. All rights reserved. OpenPie Confidential D a t a C o m p u t i n g f
    0 码力 | 45 页 | 1.32 MB | 1 年前
    3
  • pdf文档 云原生数据库 PieCloudDB eMPP架构设计与实现

    分布式系统(SQL/NoSQL/存储) • 最近 7+ 年⼀直从事开源分布式数据库开发 一个eMPP 云原生分布式SQL数据库 一个云原生实时大数据平台基座 愿景:安全可靠 使用简单 功能齐全 性能极致 传统分布式MPP架构痛点 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩缩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 我们需要一个云原生数据库 ODBC/JDBC driver等). 云原生 云中立 • 弹性计算资源(横向纵向)、极速调整 • 多集群是另外一个弹性的维度 • 共享用户数据(如按需付费的对象存储) • 共享元数据 • MPP架构:分布式,海量数据并行处理 • e代表弹性(elastic) 完善的Postgres生态 为什么选择Postgres? • 关于Postgres • 公司中⽴,开源协议友好,国际⼀流⼯程⽔准的先进开源数据库 ⺫的: • 减轻FoundationDB集群负担 • 加速查询优化(⺴络延迟远⾼于内存延迟) • 以Postgres原⽣的元数据缓存概念为基础,优化重构实现适⽤于 多集群架构 ⽤户数据存储引擎 • PAX(⾏列混存)配以⾼效压缩 • Block⽂件为⼀个存储(MVCC)单位 • 辅助信息存储⽤于计算优化 • 设计考虑: • ⾼效和精准的统计信息收集 • 存储和计算成本 • 各种计算优化
    0 码力 | 31 页 | 1.43 MB | 1 年前
    3
  • pdf文档 PieCloudDB 的云原生之路

    我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式 MPP 架构痛点 IvorySQL开源数据库社区 PART 02 云原生数据库 PieCloudDB 简介 IvorySQL开源数据库社区 数据 计算 发现 数据:云上数据既是隔离也是连通。从安全的角度是隔离,同时具 IvorySQL开源数据库社区 • 秒级扩缩容 • 多集群共享一份数据集 • 用户只需为存储和计算付费 • 扩展困难(后期升级部署困难) • 木桶效应 • 大量数据孤岛问题 计算层 存储层 MPP: Massive Parallel Processing eMPP : elastic Massive Parallel Processing 传统 PC 时代数据库 PieCloudDB 云原生时代数据库 Host 3 Data Table Data Table Data Table IvorySQL开源数据库社区 PieCloudDB 核心架构特点 元数据服 务 eMPP 分布式引擎 存储服务 透明数据加密 优化器 IvorySQL开源数据库社区 01 元数据管理 IvorySQL开源数据库社区 实现多节点共同访问的数据存储 实现分布式锁 • 高可用和多集群 •
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    我们需要一个云原生大数据平台 缺乏弹性 业务使用不灵活 成本高昂 集群固定,资源利用率低 木桶效应 扩容难 数据孤岛 元数据和用户数据跨集群 访问困难 运维成本 运维和DBA 传统分布式MPP架构痛点 @2022 OpenPie. All rights reserved. OpenPie Confidential 数据 计算 发现 数据:云上数据既是隔离也是连通。从安全的⾓度是隔离,同时具 Confidential • 秒级扩缩容 • 多集群共享一份数据集 • 用户只需为存储和计算付费 • 扩展困难(后期升级部署困难) • 木桶效应 • 大量数据孤岛问题 计算层 存储层 MPP: Massive Parallel Processing eMPP : elastic Massive Parallel Processing 传 统 P C 时 代 数 据 库 PieCloudDB云原生时代数据库 投资部门 @2022 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB 核心架构特点 元数据服 务 eMPP分布式 引擎 存储服务 透明数据加密 优化器 @2022 OpenPie. All rights reserved. OpenPie Confidential D a t a C o m p u t i
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 PieCloudDB:云原生分布式虚拟数仓的诞生之旅

    Confidential PieCloudDB简介 (cont.) • PieCloudDB产品⽬标 • 安全可靠 使⽤简单 功能⻬全 性能极致 • 公有云、私有云、混合云 • ⼀个构建于⼤数据计算引擎上的⼤数据计算平台 @2022 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB简介 (cont.) • PieCloudDB有个很优秀的智能云原⽣平台 Confidential 构建之路 - 数据存储 • 数据存储设计考虑 • S3访问友好(各种统计数据⽤于data skipping、查询加速等) • OLAP友好(PG的HEAP是OLTP⾏存引擎) • 计算引擎加速友好(SIMD, SIMT, etc) @2022 OpenPie. All rights reserved. OpenPie Confidential 构建之路 - 数据存储 • 使⽤缓存,⻓远来说分布式缓存. • 虚拟数仓:⼀致性Hash存储缓存⽂件. • Data Skipping (⽐如Block Skipping,预聚集,etc). • S3访问通⽤优化:并⾏化、预读、异步、Mpp引擎"steal". • C++抽象接⼝,访问更多的storage provider (HDFS, NAS, etc). • …... @2022 OpenPie. All rights reserved
    0 码力 | 24 页 | 2.01 MB | 1 年前
    3
  • pdf文档 πDataCS赋能工业软件创新与实践

    企业简介 l OpenPie是立⾜于国内的基础数据计算领域⾼科技创新机构; l 拥有强⼤的数据库内核研发团队、数据科学团队和数字化 转型团队; l 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎⽅ 向进⾏创新,全面拥抱AI技术趋势。 企业⽂化 使命:数据计算,只为新发现 愿景:成为立⾜中国基础数据计算领域的全球顶级⾼科技创新机构 价值观:以⼈为本、开放创新、拥抱变化、诚信正直 拓数派中国总部与全球分支机构 云原⽣数仓PieCloudDB 社区版与商业版正式发布 极速进⼊成长期 Day-1 2023 引领数据计算时代到来 3月 2023拓数派战略暨新产品发布会 重磅发布πDataCS数据计算系统首个计算引擎 PieCloudDB云原⽣虚拟数仓 拓数派基于阿里云构建公共云数据仓库服务 正式上线 6月 上榜 EqualOcean 2022年源自中国值 得关注的新锐全球化科技品牌 与东吴证券在数仓虚拟化和信创领域展开试点合作 业领袖” 4月 冯雷被评为杭州市所有的独角兽和准独角兽企 业中唯⼀“年度创业⼈物” 打造⼤模型时代 立身中国的世界级团队 首家以虚拟数仓通过信通院/可信AP数据库评测 7月 拓数派数据计算引擎PieCloudDB虚拟数仓再获信创认可 8月 拓数派⼊选中国信通院“铸基计划”「⾼质量数字化 转型产品及服务全景图」 拓数派再次携WAIC创建智能驾驶科技分会 杭州萧⼭区政府“⼀事⼀议”支持政策获
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 兼容龙蜥的云原生大模型数据计算系统:πDataCS

    驱动企业实现从"软件公司"到"数据公司"再到"数学公司"的持续进阶。 拓数派旗下大模型数据计算系统(PieDataComputing System,缩写πDataCS),以云原生技术 重构数据存储和计算,一份存储,多引擎数据计算,全面升级大数据系统至大模型时代,使得自主可 控的大模型数据计算系统保持全球领先,成为AI的基础科技底座的同时,开启AI技术的新范式。 πDataCS旨在助力企业优化计算瓶颈、充分利用和 计算机和经济学,获得物理经济学双学位。(北大报道)研究生就读卡内基梅隆大学。(InfoQ报道) • 归国前就职于美国Oracle公司数据库服务器技术部门,是Oracle Cloud Control的分布式调动引擎的 主要贡献者之一。 • 因为参与Pivotal的拆分创建、C轮融资和IPO成功,以及主导的Greenplum产品在全球范围的开源影 响力,被《数字商业周刊》选为2019年度封面人物。(《数商周刊》报道) 云原生数仓PieCloudDB 社区版与商业版正式发布 极速进入成长期 Day-1 2023引领数据计算时代到来 3月 2023拓数派战略暨新产品发布会 重磅发布πDataCS数据计算系统首个计算引擎 PieCloudDB云原生虚拟数仓 拓数派基于阿里云构建公共云数据仓库服务 正式上线 6月 上榜 EqualOcean 2022年源自中国值 得关注的新锐全球化科技品牌 与东吴证券在数仓虚拟化和信创领域展开试点合作
    0 码力 | 29 页 | 7.46 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
时代下多数据计算引擎设计实现PieCloudDBDatabase产品白皮皮书白皮书原生虚拟数仓基于PostgreSQLeMPP据库数据库架构构设架构设计虚拟化分布布式分布式诞生之旅DataCS赋能工业软件创新实践兼容模型系统
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩