积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(18)PieCloudDB(18)

语言

全部中文(简体)(18)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 18 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 云原生数据库PieCloudDB 性能优化之路

    郭峰 拓数派 云原生数据库PieCloudDB 性能优化之路 打造立足于国内 基础数据计算领域的世界级高科技创新驱动机构 杭州拓数派科技发展有限公司(又称“OpenPie”),以“Data Computing for New Discoveries”「数据计算,只为新发现」为使命, 成立后的短短10个月时间内,完成了包括头部产业基金、东吴证券、元 禾重元和政府科创平台在内的连续三轮战略融资。 • 利用Motion产生分布式的查询计划 • 这些分布式的查询计划会被分为更小的单元,并被分发到不同的工作节点中并行执行 • 对于聚集操作,利用分布式的优势,在工作节点之间通过多阶段聚集来提升性能 # explain (costs off) select sum(b) from t group by a; QUERY PLAN -----------------------------
    0 码力 | 26 页 | 711.44 KB | 1 年前
    3
  • pdf文档 πDataCS赋能工业软件创新与实践

    计算三者互为增强,全面升级⼤数据系统⾄⼤模型时代 ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 软件优化 + 新硬件(FPGA)加速,实现数据全链路的性能飞跃, 让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024 OpenPie. All rights reserved. OpenPie Confidential • 全新云原⽣架构「⼀份数据,多引擎计算」 OpenPie Confidential πDataCS 优势1 :全面升级Hadoop⼤数据和Greenplum数仓⾄云原⽣数据平台 是⼀个存储系统+计算框架的软件框架。主要解决海量数据存储与计算的问题, 是⼤数据技术中的基⽯。让用户可以在不了解分布式底层细节的情况下,开发 分布式程序,以⼀种可靠、⾼效、可伸缩的⽅式进⾏数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 国外开源软件,与国产软硬件兼容性差,不符合信创趋势,也⽆法直接利用云 资源的弹性能⼒。组件太多,导致集群部署和后期运维管理很麻烦,市场上相 关⼈才储备量不多,技术兜底依赖于Cloudera,国内第三⽅公司主要是基础运 维和开发为主。 ⼤模型数据计算系统,以云原⽣技术重构数据存储和计算,⼀份数据,多引擎 数据计算。主要解决海量数据的存储和实时计算问题,具备湖仓⼀体化的能⼒, 用户可根据实际情况去选择合适的数据计算引擎。
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    琐。 木桶效应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖幸”整个集群的性能,导致查询速度变慢。 随卷时间的推移,业务的增长,企业往往需要在1-2年后 对集群增加计算节点,此时,无论新的计算节点性能如何好,集群总体性能都会受制于老的节点。因此真实生产环境 中,常常见到客户在需要扩容时,采取重新新建集群的方式。 数据瑰岛 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迁代迅速,相关人员需保持积极的知识更新意识。根关人才市场较小,人才芽乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越多的企业将应用向云上迁移,而越来越多 存算分离架构,支持本地存储和云存储,推荐采用对象存储,提供数据压缩、数据加密、 多模存储以及多级缓存等功能; 4. 云原生平台节点: PieCloudDB 集群管控节点,提供数据洞察和集群运维等功能,支持可视化的数据 分析、性能监控、集群启停、自动化部署以及权限管控等能力; 用户或者应用可直接调用 PieCloudDB 云原生虚拟数仓服务进行数据分析,提供标准的 SQL 接口,且内置各种分析工 具,并原生兼容 Postgres
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    桶 效 应 传统 MPP 数据仓库架构存在“木桶效应”,集群整体执行速度取决于最“短板的”节点的性能。因此,一个节点的 表现往往会 “拖垮”整个集群的性能,导致查询速度变慢。 随着时间的推移,业务的增长,企业往往需要在1-2年后 对集群增加计算节点,此时,无论新的计算节点性能如何好,集群总体性能都会受制于老的节点。因此真实生产环境 中,常常见到客户在需要扩容时,采取重新新建集群的方式。 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迭代迅速,相关人员需保持积极的知识更新意识。相关人才市场较小,人才匮乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 5 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越多的企业将应用向云上迁移,而 4. 云原生管控平台节点: PieCloudDB 集群管控节点,提供数据洞察和集群运维等功能,支持可视化的 数据分析、性能监控、集群启停、自动化部署以及权限管控等能力; 数据应用层: 用户或者应用可直接调用 PieCloudDB 云原生虚拟数仓服务进行数据分析,提供标准的 SQL 接口,且内置各种分析工 具,并原生兼容
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 兼容龙蜥的云原生大模型数据计算系统:πDataCS

    智能新硬件技术 πFPGA 数据存储|虚拟数仓 | 特定领域(如神经网络) 私有云 Mundo元数据管理系统 统一Catalog 是一个存储系统+计算框架的软件框架。主要解决海量数据存储与计算的问题,是 大数据技术中的基石。让用户可以在不了解分布式底层细节的情况下,开发分布 式程序,以一种可靠、高效、可伸缩的方式进行数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 国外开源软件,与国产软硬件兼容性差,不符合信创趋势,也无法直接利用云资 源的弹性能力。组件太多,导致集群部署和后期运维管理很麻烦,市场上相关人 才储备量不多,技术兜底依赖于Cloudera,国内第三方公司主要是基础运维和开 发为主。 大模型数据计算系统,以云原生技术重构数据存储和计算,一份数据,多引擎数 据计算。主要解决海量数据的存储和实时计算问题,具备湖仓一体化的能力,用 户可根据实际情况去选择合适的数据计算引擎。 场景的数据 处理,业务开发周期短,现存的代码基本可以无缝迁移和复用。 国内自主研发,具备社区版、商业版以及云SaaS服务,与国产软硬件完美兼容, 属于信创产业。支持公有云,可充分利用云资源的弹性能力。组件少,提供可视 化管理平台,运维管理简单,通过短暂学习即可掌握,无论是原厂商还是生态合 作伙伴都可以直接提供技术服务,7 * 24的安心保障。 πDataCS 优势1 :全面升级Hado
    0 码力 | 29 页 | 7.46 MB | 1 年前
    3
  • pdf文档 大模型时代下向量数据库的设计与应用

    在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 开发和性能优化等实践经验。 邱培峰 拓数派向量数据库负责人 拓数派:大模型数据计算系统先行者 • 拓数派( OpenPie)是立足于国内的基础数据计算领域高科技 创新机构; • 拥有强大的数据库内核研发团队、数据科学团队和数字化转型团 大模型应用和RAG • 向量近似搜索和向量数据库 • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 • 私域数据 - LLM训练数据多来源于公开渠道,无法接触到私域数据,对特定领域的生成任务质量不高。 • 长期记忆 向量数据库 • embedding通过大模型将各种形式的数据转换成向量 向量数据库 • 两个向量可以计算它们的距离(欧式,余弦/内积, 曼哈顿等),距离越近,表示这两个物体越相似 • 向量搜索的基本问题:K-Nearest Neighbor • 在已有的N个向量中找出与给定向量距离最近的K个向量 Query P1 P3 P4 P5 P6 (filtered) P7 P8 (filtered)
    0 码力 | 28 页 | 1.69 MB | 1 年前
    3
  • pdf文档 PieCloudDB 的云原生之路

    Come True IvorySQL开源数据库社区 • 秒级扩缩容 • 多集群共享一份数据集 • 用户只需为存储和计算付费 • 扩展困难(后期升级部署困难) • 木桶效应 • 大量数据孤岛问题 计算层 存储层 MPP: Massive Parallel Processing eMPP : elastic Massive Parallel Processing 传统 PC 时代数据库 IvorySQL开源数据库社区 P i e C l o u d D B 新 一 代 云 原 生 虚 拟 数 仓 核 心 价 值 多个数仓归并至云虚拟数仓,打破传统数仓场景下 数据孤岛,解决数据多副本问题,帮助企业降低数 仓管理复杂度,以更低的成本实现存算资源在云上 更灵活的配置。 TDE 技术保证了所有数据在落盘前完成加密,服务 器无感知技术(Serverless)利用云上无限计算资 源和弹性保证了虚拟数仓永远在线可用,S3 全局只需要存储一份数据,通过共享存储来实现数据共享,避免拷 贝和维护多份数据副本 IvorySQL开源数据库社区 事务 • ACID 支持两种隔离级别:读已提交、可重复读 • 扩展性 事务管理器无单点性能瓶颈 • 隔离性 不同租户之间的事务管理器是完全隔离的,不会相互影响 • 容错性 事务管理器支持对各类基础设施故障进行自动容错 IvorySQL开源数据库社区 03 用户数据存储 IvorySQL开源数据库社区
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    reserved. OpenPie Confidential • 秒级扩缩容 • 多集群共享一份数据集 • 用户只需为存储和计算付费 • 扩展困难(后期升级部署困难) • 木桶效应 • 大量数据孤岛问题 计算层 存储层 MPP: Massive Parallel Processing eMPP : elastic Massive Parallel Processing 传 统 P C 时 代 Confidential P i e C l o u d D B 新 一 代 云 原 生 虚 拟 数 仓 核 心 价 值 多个数仓归并⾄云虚拟数仓,打破传统数仓场景下 数据孤岛,解决数据多副本问题,帮助企业降低数 仓管理复杂度,以更低的成本实现存算资源在云上 更灵活的配置。 TDE技术保证了所有数据在落盘前完成加密,服务 器⽆感知技术(Serverless)利⽤云上⽆限计算资源 和 OpenPie. All rights reserved. OpenPie Confidential • ACID - 支持两种隔离级别:读已提交、可重复读 • 扩展性 - 事务管理器无单点性能瓶颈 • 隔离性 - 不同租户之间的事务管理器是完全隔离的,不会相互影响 • 容错性 - 事务管理器支持对各类基础设施故障进行自动容错 事务 @2022 OpenPie. All rights
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 PieCloudDB:云原生分布式虚拟数仓的诞生之旅

    PieCloudDB简介 (cont.) • 为什么我们觉得数据库云原⽣很重要? • 破除数据隔离(⼀份数据就好). • 否则⼀致性问题、也浪费存储空间. • 数据作为新的⽣产要素要流通起来才有更⼤价值. • 参考云被认同的时间线. • 弹性伸缩(成本 & 性能 & 灵活). • 云对于⼩中⼤客⼾都有价值. @2022 OpenPie. All rights reserved. OpenPie OpenPie Confidential PieCloudDB简介 (cont.) • PieCloudDB产品⽬标 • 安全可靠 使⽤简单 功能⻬全 性能极致 • 公有云、私有云、混合云 • ⼀个构建于⼤数据计算引擎上的⼤数据计算平台 @2022 OpenPie. All rights reserved. OpenPie Confidential PieCloudDB简介 (cont.) • P wrapper访问Parquet, etc. @2022 OpenPie. All rights reserved. OpenPie Confidential 构建之路 - 数据访问加速 • S3访问考虑(提升性能 & 降低成本) • 使⽤缓存,⻓远来说分布式缓存. • 虚拟数仓:⼀致性Hash存储缓存⽂件. • Data Skipping (⽐如Block Skipping,预聚集,etc). • S3访
    0 码力 | 24 页 | 2.01 MB | 1 年前
    3
  • pdf文档 云原生数据库 PieCloudDB eMPP架构设计与实现

    • 代码级/算法级/系统级性能优化 • Linux/Unix内核和系统开发、虚拟化(芯⽚KVM⽀持实现)和云计算架 构、⾼速⺴络开发(内核和应⽤层如DPDK) • 分布式系统(SQL/NoSQL/存储) • 最近 7+ 年⼀直从事开源分布式数据库开发 一个eMPP 云原生分布式SQL数据库 一个云原生实时大数据平台基座 愿景:安全可靠 使用简单 功能齐全 性能极致 传统分布式MPP架构痛点 (TDE) • 分布式对象存储多副本多可⽤区保证数据安全:“⼀份”数据, 避免数据不⼀致 • 将来Time Travel查询“回收站”数据 ⽤户数据查询效率优化 • 远程访问数据要考虑的点:性能和成本 • 如何解决? • 数据和/或辅助信息缓存,同时⼀致性Hash减少数据移动 • 读取优化(⽐如异步并⾏等) • 计算优化(各种功能特性持续优化中) • 很多复杂OLAP查询如果不是IO瓶颈,不会受制于它 各种外表数据源联邦查询组件天然⽀持(或者需少量修改) • 各种Postgres/Greenplum组件或者功能天然⽀持,如In- database AI组件Madlib, json, text等 • 实时ETL/ELT性能对⽐PieCloudDB 1.0有巨⼤提升 • 流处理:原⽣⽀持kafka数据导⼊和查询, 在PieCloudDB侧导⼊ 实现exactly once语义 智能化云原⽣平台 (数据服务平台)
    0 码力 | 31 页 | 1.43 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
原生数据据库数据库PieCloudDB性能优化DataCS赋能工业软件创新实践Database产品白皮皮书白皮书虚拟数仓兼容模型计算系统时代向量设计应用虚拟化分布布式分布式诞生之旅eMPP架构构设架构设计实现
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩