积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(15)PieCloudDB(15)

语言

全部中文(简体)(15)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 15 个.
  • 全部
  • 数据库
  • PieCloudDB
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 云原生数据库 PieCloudDB eMPP架构设计与实现

    毕业于中国科技⼤学,AI相关专业 • 毕业 1 年后到现在⼀直从事底层基础软件开发,10多年开发经验 • 领域涉及到: • 代码级/算法级/系统级性能优化 • Linux/Unix内核和系统开发、虚拟化(芯⽚KVM⽀持实现)和云计算架 构、⾼速⺴络开发(内核和应⽤层如DPDK) • 分布式系统(SQL/NoSQL/存储) • 最近 7+ 年⼀直从事开源分布式数据库开发 一个eMPP 云原生分布式SQL数据库 一个云原生实时大数据平台基座 扩⼤平台受众 • 让更多⽤户离数据更近 — 离繁琐操作更远 PieCloudDB 是这么来帮助我们的⽤户的 ⾯向运维 部署运维难度⼩ • 全⾯拥抱容器化技术,可以适配多种环境 • 已⽀持私有信创环境和多云环境 • 既实现私有环境离线部署,也可充分利⽤公有云技术设施 • 数据库维护平台托管 ⾯向管理 多个维度轻松管控 PieCloudDB⽀持 • ⼀个数仓多个计算集群同时运⾏ • 针对不
    0 码力 | 31 页 | 1.43 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    法弹性、快速地分析业务数据,错失了充分挖掘数据 Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 传统数据仓库价格高昂的软硬件、开发运维人员的高晶薪资需要企业进行巨大的前期投入。传统数据仓库客户的生产 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往需要企业花费巨大的运维和时间成本,且操作繁 表现往往会 “拖幸”整个集群的性能,导致查询速度变慢。 随卷时间的推移,业务的增长,企业往往需要在1-2年后 对集群增加计算节点,此时,无论新的计算节点性能如何好,集群总体性能都会受制于老的节点。因此真实生产环境 中,常常见到客户在需要扩容时,采取重新新建集群的方式。 数据瑰岛 随着业务的发展,数据量的增加,和信息化建设的需求,企业会为不同部门建设相应的业务信息化系统。我们在真实 客户场景中,常常看到很 很多元数据 会在不同集群间存在不一致的版本信息。此外,如果企业需要做跨集群的访问,往往非常困难,会造成数据孤岛的存 在。 运维成本 对于传统 MPP 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迁代迅速,相关人员需保持积极的知识更新意识。根关人才市场较小,人才芽乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    法弹性、快速地分析业务数据,错失了充分挖掘数据 价值所带来的商业机会。 传 统 数 据 仓 库 架 构 成 本 高 昂 传统数据仓库价格高昂的软硬件、开发运维人员的高昂薪资需要企业进行巨大的前期投入。传统数据仓库客户的生产 环境资源利用率,无论是存储或是计算资源往往都不尽人意。随着存储和工作负载需求的日益增长,面临数据库的扩 容和升级时,由于传统数据仓库架构存储和计算的紧密耦合,往往 “拖垮”整个集群的性能,导致查询速度变慢。 随着时间的推移,业务的增长,企业往往需要在1-2年后 对集群增加计算节点,此时,无论新的计算节点性能如何好,集群总体性能都会受制于老的节点。因此真实生产环境 中,常常见到客户在需要扩容时,采取重新新建集群的方式。 数 据 孤 岛 随着业务的发展,数据量的增加,和信息化建设的需求,企业会为不同部门建设相应的业务信息化系统。我们在真实 客户场景 会在不同集群间存在不一致的版本信息。此外,如果企业需要做跨集群的访问,往往非常困难,会造成数据孤岛的存 在。 运 维 成 本 对于传统 MPP 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迭代迅速,相关人员需保持积极的知识更新意识。相关人才市场较小,人才匮乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓 PieCloudDB 的架构和关键模块实现

    @2022 OpenPie. All rights reserved. OpenPie Confidential • 使用数据湖为基础进行数据分析需要多个组件进行集成部署,多个 组件的配合需要大量的开发工作 • 许多缺乏 ANSI SQL 支持,需要专门的技术技能 • 专用引擎/工具(例如图形数据库)通常难以与记录系统集成,限制 了分析和创新的操作化 NoSQL和数据湖为基础的基础设施需要的分析工具不容易集成和部署 Confidential • 公有云无限的计算池可以提供理想的弹性计算资源 • 公有云廉价且无限容量的对象存储 • 传统数仓缺乏弹性和存算分离,难以利用公有云的优势 以关系型数据库为基础的数据仓库很难适应云环境 @2022 OpenPie. All rights reserved. OpenPie Confidential 计算引擎方面 • 完备的SQL语言支持 • 高效的分布式计算能力 • 完备的事务支持,隔离性 全面的逻辑优化(谓词下推,子查询子链接提升,外连接消除) • 纯粹基于代价的物理优化 • 全面的数据分布特性描述,分布式代价估算,高效分布式表连接 • 多阶段的聚集 专门为复杂查询设计的优化器 分布式环境高效执行器 • 多阶段执行模型 • 流式数据重分布 @2022 OpenPie. All rights reserved. OpenPie Confidential select * from
    0 码力 | 43 页 | 1.14 MB | 1 年前
    3
  • pdf文档 πDataCS赋能工业软件创新与实践

    均已加⼊拓数派。成员毕业自 CMU、北⼤、清华和科⼤少年班 等顶级学术机构,并有成员获有 奥赛奖牌。 郭罡(Paul Guo) 合 伙 ⼈ & C T O • 中国科技⼤学少年班 • 18年+底层基础软件领域开发经验 • 原Greenplum首席内核架构师 • Apache HAWQ PMC成员 陆公瑜(Brian Lu) 合伙⼈&COO • 英国约克⼤学 • 15年+产品⽣态建设和运营管理经验 :全面升级Hadoop⼤数据和Greenplum数仓⾄云原⽣数据平台 是⼀个存储系统+计算框架的软件框架。主要解决海量数据存储与计算的问题, 是⼤数据技术中的基⽯。让用户可以在不了解分布式底层细节的情况下,开发 分布式程序,以⼀种可靠、⾼效、可伸缩的⽅式进⾏数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 MapReduce以及YARN 。可视化管理是Ambari,其他的计算引擎、列存数据库 的完成各种业务场景的数据处理需求。但是对于开发的要求比较⾼,需要掌握 多种组件的不同使用⽅法,业务开发周期会比较久。 国外开源软件,与国产软硬件兼容性差,不符合信创趋势,也⽆法直接利用云 资源的弹性能⼒。组件太多,导致集群部署和后期运维管理很麻烦,市场上相 关⼈才储备量不多,技术兜底依赖于Cloudera,国内第三⽅公司主要是基础运 维和开发为主。 ⼤模型数据计算系统,以云原⽣技术重构数据存储和计算,⼀份数据,多引擎
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 兼容龙蜥的云原生大模型数据计算系统:πDataCS

    我们秉承硅谷创新文化和普及数字化公益等社会责任。在公司成长的过程中,不遗余力为人才提供一个成为业内明星的平 台和通道。 郭罡(Paul Guo) 合 伙 人 & C T O • 中国科技大学少年班 • 18年+底层基础软件领域开发经验 • 原Greenplum/HAWQ首席内核架构师 陆公瑜(Brian Lu) 合 伙 人 & C O O • 英国约克大学 • 15年+产品生态建设和运营管理经验 • 原Greenplum中国社区发起人 私有云 Mundo元数据管理系统 统一Catalog 是一个存储系统+计算框架的软件框架。主要解决海量数据存储与计算的问题,是 大数据技术中的基石。让用户可以在不了解分布式底层细节的情况下,开发分布 式程序,以一种可靠、高效、可伸缩的方式进行数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 MapReduce以及YARN 。可视化管理是Ambari,其他的计算引擎、列存数据库 等都需要额外的组件,应对不同的场景需要安装对应的组件和依赖。 生态丰富,对结构化数据、半结构化数据以及非结构化数据都支持,可以很好的 完成各种业务场景的数据处理需求。但是对于开发的要求比较高,需要掌握多种 组件的不同使用方法,业务开发周期会比较久。 国外开源软件,与国产软硬件兼容性差,不符合信创趋势,也无法直接利用云资 源的弹性能力。组件太多,导致集群部署和后期运维管理很麻烦,市场上相关人 才储
    0 码力 | 29 页 | 7.46 MB | 1 年前
    3
  • pdf文档 PieCloudDB 的云原生之路

    第三方计费模式 ü 持续产品升级,体验产品最新特性 ü 丰富的社区活动,赋能社区用户 ü 强大的开发者支持 ü 云原生 eMPP 专利技术支持与赋能 ü 7*24小时产品故障服务响应 ü 基于业务需求的专家团队服务 ü 国产化软硬件,技术自主可控 ü 存算分离支持独立扩容 ü 全面适配信创环境 公 有 云 私 有 云 裸 硬 件 企 业 版 社 区 版 云 上 云 IvorySQL开源数据库社区 01 元数据管理 IvorySQL开源数据库社区 实现多节点共同访问的数据存储 实现分布式锁 • 高可用和多集群 • Multi-master • 多机并发访问 • 分布式环境下的多版本 元数据管理的设计目标 IvorySQL开源数据库社区 mstore — FoundationDB上的Catalog 基于 MVCC 的事务隔离级别 将元组以 key-value 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 IvorySQL开源数据库社区 云原生优化器 聚集下推 预计算 文件剪裁 针对云环境的特性,提供更多高阶的优化 IvorySQL开源数据库社区 05 安全性增强 IvorySQL开源数据库社区 透明加密技术 • 加密用户数据,避免被未经许可人员读出 • 用户无感知,不影响用户的业务,对性能影响小
    0 码力 | 47 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PieCloudDB云原生数仓虚拟化之路

    第三⽅计费模式 ü 持续产品升级,体验产品最新特性 ü 丰富的社区活动,赋能社区⽤户 ü 强⼤的开发者⽀持 ü 云原⽣eMPP专利技术⽀持与赋能 ü 7*24⼩时产品故障服务响应 ü 基于业务需求的专家团队服务 ü 国产化软硬件,技术⾃主可控 ü 存算分离⽀持独⽴扩容 ü 全⾯适配信创环境 公 有 云 私 有 云 裸 硬 件 企 业 版 社 区 版 云 上 云 版 OpenPie Confidential 元数据管理的设计目标 实现多节点共同访问的数据存储 实现分布式锁 • 高可用和多集群 • Multi-master • 多机并发访问 • 分布式环境下的多版本 @2022 OpenPie. All rights reserved. OpenPie Confidential mstore — FoundationDB上的Catalog 基于 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights reserved. OpenPie Confidential 云原生优化器 聚集下推 预计算 文件剪裁 针对云环境的特性,提供更多高阶的优化 @2022 OpenPie. All rights reserved. OpenPie Confidential D a t a C o m p u t i n g f
    0 码力 | 44 页 | 1.64 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 社区版集群安装部署手册 V2.1

    ....................................................................................... 12 2.12 环境检查和准备 ............................................................................................. ....................................................................................... 25 3.12 环境检查和准备 ............................................................................................. 备注: l 基于 K8S 环境搭建 PieCloudDB 集群。 l 推荐服务器资源不低于 8C/16GB/300GB。 l 一些镜像和组件默认在根目录下,所以操作系统的根目录要求不小于 150GB。 l 所有服务器需要配置 yum,且能够连接 Internet。 l 部署方案有两种,请根据实际情况选择: Ø 本地无 K8S 环境和对象存储,请选择第二章节《PieCloudDB
    0 码力 | 42 页 | 1.58 MB | 1 年前
    3
  • pdf文档 PieCloudDB:基于PostgreSQL的eMPP云原生数据库

    OpenPie Confidential 元数据管理的设计目标 实现多节点共同访问的数据存储 实现分布式锁 • 高可用和多集群 • Multi-master • 多机并发访问 • 分布式环境下的多版本 @2022 OpenPie. All rights reserved. OpenPie Confidential mstore — FoundationDB上的Catalog 基于 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights reserved. OpenPie Confidential 云原生优化器 聚集下推 预计算 文件剪裁 针对云环境的特性,提供更多高阶的优化 @2022 OpenPie. All rights reserved. OpenPie Confidential 安全性增强 生态建设 全链路优化 @2022 OpenPie
    0 码力 | 45 页 | 1.32 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
原生数据据库数据库PieCloudDBeMPP架构构设设计架构设计实现Database产品白皮皮书白皮书虚拟数仓关键模块DataCS赋能工业软件创新实践兼容模型计算系统虚拟化社区集群安装部署手册V2基于PostgreSQL
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩