云原生虚拟数仓PieCloudDB Database产品白皮书5 6 7 7 8 11 13 15 16 目 录 行 业 背 景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈(Global Datasphere)呈指数级递增, IDC预测全球数据圈将于 2 更多机会。早在2019年,Gartner便做出预测:数据库市场的未来在云上 。在2022年首次发布的《数据库中国市场 指南》(Market Guide for DBMS,China)中,Gartner 指出,中国数据库行业将加速增长并逐步向云端迁移,未来 四年,中国数据库行业向公有云迁移的速度将超过全球平均水平。云原生数据库成为大势所趋,各个企业也都在向这 一趋势靠拢。2020 年数据显示,云数据库已占据整体数据库市场 PieCloudDB 整体架构分为三个层次,包括基础设施层、数据处理层及数据应用层。详细阐述如下: 基础设施层 基础设施层为 PieCloudDB 提供计算资源、存储资源和网络资源,PieCloudDB 支持部署在物理服务器、虚拟机以及容 器中,同时也提供 PieCloudDB 公有云 SaaS 服务。 数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点0 码力 | 17 页 | 2.02 MB | 1 年前3
PieCloudDB Database 产品白皮书 PiecloudDB 基于 eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 百岗 行业背景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 术、物联网技术、5G等技术的发展,全球数据圈 (Global Datasphere) 呈指数级递增, IDC预测全球数据圈将于 2 更多机会。早在2019年,Gartner便做出预测: 数据库市场的未来在云上 作。在2022年首次发布的《数据库中国市场 指南》 (Market Guide for DBMS,China) 中,Gartner 指出,中国数据库行业将加速增长并逐步向云端迁移,未来 四年,中国数据库行业向公有云迁移的速度将超过全球平均水平 生数据库成为大势所趋,各个企业也都在向这 一趋势靠拢。2020 年数据显示,云数据库已占据整体数据库市场份 pieCloudDB 整体架构分为三个层次,包括基础设施层、数据处理层及数据应用层。详细阐述如下: 基础设施层为 pieCloudDB 提供计算资源、存储资源和网络资源,PieCloudDB 支持部署在物理服务器、庶拟机以及容 器中,同时也提供 PieCloudDB 公有云 Saa5 服务。 * ”数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点、计算节点、存储节点以及云原生平台节点等0 码力 | 17 页 | 2.68 MB | 1 年前3
πDataCS赋能工业软件创新与实践计算三者互为增强,全面升级⼤数据系统⾄⼤模型时代 ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 软件优化 + 新硬件(FPGA)加速,实现数据全链路的性能飞跃, 让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024 OpenPie. All rights reserved. OpenPie Confidential 问题,具备湖仓⼀体化的能⼒, 用户可根据实际情况去选择合适的数据计算引擎。 灵活可扩展的插件式引擎,组件少⽽精(All in One),提供3种计算引擎、1种 Lakehouse引擎,1个硬件加速器,应对各种场景的计算,同时也兼容Spark、 Flink等计算任务,保留用户的使用习惯。 ⽣态完善,支持主流的开发语⾔和数据科学⼯具,支持多模数据处理(结构化、 半结构化以及非结构化),提供 reserved. OpenPie Confidential P i e C l o u d D B 技 术 突 破 : 数 仓 虚 拟 化 云原⽣存算分离架构 运用元数据-计算-数据分离的三层架构,实现云上存储资源与 计算资源的独立管理。云上计算资源可弹性分配,有查询计 算任务的时候按需启动,按照使用时间和规模计算成本。 eMPP分布式专利技术 在云上,PieCloudDB利用eMPP(elastic0 码力 | 36 页 | 4.25 MB | 1 年前3
PieCloudDB Database V2.1 版本说明PieCloudDB 的计算层,各个计算节点针对元数据都设计了 多层缓存结构。 其中,针对元数据,PieCloudDB 实现了元数据层全新的缓存机制,有效减少了访问元 数据服务器带来的网络通信开销和元数据服务器的负载,提高元数据访问的速度。 • 可观察性增强:可得到更多的查询时系统的统计信息,包括元数据管理、S3 等。 • Vacuum 优化:在元数据层通过快速过滤不需要 vacuum vacuum 的数据,从而实现 vacuum 加速。 • 存储引擎 简墨(JANM) 异常处理的优化: 避免各种异常情况下数据残留。 • 简墨(JANM)分布式处理增强:更高效的元数据采集和分发,提升用户查询响 应时间,降低系统负载 • 简墨(JANM)动态分配读取文件增强 dispatch 性能:此优化将动态的分配要 读取的文件给各个执行节点,降低查询的启动代价。0 码力 | 3 页 | 257.15 KB | 1 年前3
云原生数据库 PieCloudDB : Unbreakable 安全特性剖析¦§¨©:ª{Rkž«¬-®¯u®°Z±²³‡$M•´µ„ PART 01 的安全特性 三大区域 • 云原生安全 • 传输层加密 • 缓存数据加密 • 存储安全 • 元数据持久化存储 • 用户数据多副本加密储存 • 计算安全 • 集群失效不影响用户数据 • ACID保证 三大区域 • 云原生安全 • 传输层加密 • 缓存数据加密 • 存储安全 • 元数据持久化存储 • 用户数据多副本加密储存 • 不影响批量读取,流式数据写入性能 来自用户的需求(2) • 支持国密标准 • 合规 • 加密算法可选 • 免配置 • 开箱即用 技术挑战(1) • 不可避免的性能损失 • 选用支持硬件加速的加密算法 • SIMD 支持 • 减少因为密钥泄露而造成的损失 • 多级密钥 • 密钥加密密钥 • 用户无感知 • 自动生成次级密钥 • 密钥自管理 • 分区加密 技术挑战(2)0 码力 | 34 页 | 599.00 KB | 1 年前3
兼容龙蜥的云原生大模型数据计算系统:πDataCS问题,具备湖仓一体化的能力,用 户可根据实际情况去选择合适的数据计算引擎。 灵活可扩展的插件式引擎,组件少而精(All in One),提供3种计算引擎、1种 Lakehouse引擎,1个硬件加速器,应对各种场景的计算,同时也兼容Spark、 Flink等计算任务,保留用户的使用习惯。 生态完善,支持主流的开发语言和数据科学工具,支持多模数据处理(结构化、 半结构化以及非结构化),提供 新 的 核 心 技 术 出 色 的 数 仓 成 本 效 益 P i e C l o u d D B 技 术 突 破 : 数 仓 虚 拟 化 云原生存算分离架构 运用元数据-计算-数据分离的三层架构,实现云上存储资源与 计算资源的独立管理。云上计算资源可弹性分配,有查询计算 任务的时候按需启动,按照使用时间和规模计算成本。 eMPP分布式专利技术 在云上,PieCloudDB利用eMPP(elastic Parallel Processing)架构,实现多集群并发执行任务。企 业可灵活进行扩缩容,随着负载的变化实现高效的伸缩,轻松 应对PB级海量数据。 全新的存储「简墨」和缓存架构设计 在计算层,各个计算节点针对元数据和用户数据都设计了多层 缓存结构,避免网络延迟和数据移动,提高计算效率,保证用 户的实时性需求。PieCloudDB针对底层对象存储设计了高效的 文件格式,可在节省网络请求的同时提高计算效率。0 码力 | 29 页 | 7.46 MB | 1 年前3
云原生数据库 PieCloudDB eMPP架构设计与实现年后到现在⼀直从事底层基础软件开发,10多年开发经验 • 领域涉及到: • 代码级/算法级/系统级性能优化 • Linux/Unix内核和系统开发、虚拟化(芯⽚KVM⽀持实现)和云计算架 构、⾼速⺴络开发(内核和应⽤层如DPDK) • 分布式系统(SQL/NoSQL/存储) • 最近 7+ 年⼀直从事开源分布式数据库开发 一个eMPP 云原生分布式SQL数据库 一个云原生实时大数据平台基座 愿景:安全可靠 多个集群(虚拟数仓)可以共享⼀份元数据 • FoundationDB⾼可⽤设计、备份恢复保证元数据的可靠性和可 ⽤性 元数据管理缓存 • ⺫的: • 减轻FoundationDB集群负担 • 加速查询优化(⺴络延迟远⾼于内存延迟) • 以Postgres原⽣的元数据缓存概念为基础,优化重构实现适⽤于 多集群架构 ⽤户数据存储引擎 • PAX(⾏列混存)配以⾼效压缩 • Block⽂件为⼀个存储(MVCC)单位0 码力 | 31 页 | 1.43 MB | 1 年前3
PieCloudDB:云原生分布式虚拟数仓的诞生之旅OpenPie Confidential 构建之路 - 数据存储 • 数据存储设计考虑 • S3访问友好(各种统计数据⽤于data skipping、查询加速等) • OLAP友好(PG的HEAP是OLTP⾏存引擎) • 计算引擎加速友好(SIMD, SIMT, etc) @2022 OpenPie. All rights reserved. OpenPie Confidential 构建之路 但是我们还是可通过foreign data wrapper访问Parquet, etc. @2022 OpenPie. All rights reserved. OpenPie Confidential 构建之路 - 数据访问加速 • S3访问考虑(提升性能 & 降低成本) • 使⽤缓存,⻓远来说分布式缓存. • 虚拟数仓:⼀致性Hash存储缓存⽂件. • Data Skipping (⽐如Block Skipping,预聚集,etc)0 码力 | 24 页 | 2.01 MB | 1 年前3
大模型时代下向量数据库的设计与应用支持向量编码和压缩如PQ等 PieCloudVector • 使用faiss开源算法库做为向量搜索引擎 • 支持二进制索引 • 支持多级索引如HNSW+IVF等 • CPU多核并行/GPU加速 PieCloudVector • Faiss与postgres内核对接 - 基础接口 • 增加向量列类型用于基本的加载与卸载 • 实现向量距离运算符 • 实现向量近似搜索的索引,调用faiss0 码力 | 28 页 | 1.69 MB | 1 年前3
PieCloudDB Database 社区版集群安装部署手册 V2.1start docker 26. docker version 27. mkdir -p /etc/docker 28. vim /etc/docker/daemon.json ##配置镜像加速,增加一下内容: 29. { 30. "registry-mirrors": ["https://9uuo2j8u.mirror.aliyuncs.com"] 31. } 32. systemctl0 码力 | 42 页 | 1.58 MB | 1 年前3
共 15 条
- 1
- 2













