积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(12)ClickHouse(12)

语言

全部英语(8)俄语(4)

格式

全部PDF文档 PDF(10)PPT文档 PPT(2)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 12 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 英语
  • 俄语
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 ClickHouse on Kubernetes

    ClickHouse ● Incorporated in UK with distributed team in US/Canada/Europe ● US/Europe sponsor of ClickHouse community ● Offerings: ○ 24x7 support for ClickHouse deployments ○ Software (Kubernetes
    0 码力 | 34 页 | 5.06 MB | 1 年前
    3
  • pdf文档 ClickHouse on Kubernetes

    ClickHouse ● Incorporated in UK with distributed team in US/Canada/Europe ● US/Europe sponsor of ClickHouse community ● Offerings: ○ 24x7 support for ClickHouse deployments ○ Software (Kubernetes
    0 码力 | 29 页 | 3.87 MB | 1 年前
    3
  • ppt文档 Что нужно знать об архитектуре ClickHouse, чтобы его эффективно использовать

    коротко Начните использовать ClickHouse сегодня! Вопросы? Можно сюда: › clickhouse-feedback@yandex-team.ru › Telegram: https://t.me/clickhouse_ru › GitHub: https://github.com/yandex/ClickHouse/ › Google
    0 码力 | 28 页 | 506.94 KB | 1 年前
    3
  • pdf文档 3. Sync Clickhouse with MySQL_MongoDB

    Sync Clickhouse with MySQL/MongoDB Company: Xiaoxin Tech. Industry: Education Team: Big Data Leader: wangchao@xiaoheiban.cn About 100 billion data this year till now 30 million users We use
    0 码力 | 38 页 | 7.13 MB | 1 年前
    3
  • pdf文档 C++ zero-cost abstractions на примере хеш-таблиц в ClickHouse

    Спасибо за внимание @kitaisreal Максим Кита Старший разработчик ClickHouse maksim-kita@yandex-team.ru
    0 码力 | 49 页 | 2.73 MB | 1 年前
    3
  • pdf文档 7. UDF in ClickHouse

    request #5590 and #7331 Begin Content Area = 16,30 21 UDF Development Explained Begin Content Area = 16,30 22 General Steps of UDF Development Design the Interface • Meta information Example: Will
    0 码力 | 29 页 | 1.54 MB | 1 年前
    3
  • pdf文档 8. Continue to use ClickHouse as TSDB

    we do ► Support JSONB DataType for tags & value ► Support LowCardinality(JSONB) ► Support BoolFilter skip index with JSONB data type ► Support TimeSeriesMergeTree Table Engine ► Support Multiple Streams Streams for AggregationFunction ► Support TimeSeriesAggregateFunction(store sum, min, max, avg) ► Support convert sum(time_series) to sum(time_series.sum) What we do QingCloud ChronusDB 青云 QingCloud
    0 码力 | 42 页 | 911.10 KB | 1 年前
    3
  • pdf文档 1. Machine Learning with ClickHouse

    in ClickHouse › stochasticLinearRegression › stochasticLogisticRegression Stochastic methods do support multiple factors. That’s not the most important difference. 23 / 62 Stochastic linear regression CatBoost advantages › Good quality for default parameters › Sophisticated categorical features support › Models analysis tools 44 / 62 Gradient Boosting 45 / 62 Gradient Boosting 46 / 62 Gradient function) › Table function to sample data from table with repetition › Support for multiple features in simpleLinearRegression › Support for multiple loss functions in stochasticLinearRegression (MSE now)
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 0. Machine Learning with ClickHouse

    in ClickHouse › stochasticLinearRegression › stochasticLogisticRegression Stochastic methods do support multiple factors. That’s not the most important difference. 23 / 62 Stochastic linear regression CatBoost advantages › Good quality for default parameters › Sophisticated categorical features support › Models analysis tools 44 / 62 Gradient Boosting 45 / 62 Gradient Boosting 46 / 62 Gradient function) › Table function to sample data from table with repetition › Support for multiple features in simpleLinearRegression › Support for multiple loss functions in stochasticLinearRegression (MSE now)
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • ppt文档 ClickHouse: настоящее и будущее

    запросов с использованием GPU • Интеграция с ML & AI. Обработка графов • Batch jobs • Data Hub Support For Semistructured Data 27 JSO data type: CREATE TABLE games (data JSON) ENGINE = MergeTree; merge • Data is stored in columnar format: columns and subcolumns • Query nested data naturally Support For Semistructured Data 28 Example: NBA games dataset CREATE TABLE games (data String) ENGINE TABLE games (data JSON) ENGINE = MergeTree; SELECT data.teams.name[1] FROM games; — 0.015 sec. Support For Semistructured Data <-- inferred type DESCRIBE TABLE games SETTINGS describe_extend_object_types
    0 码力 | 32 页 | 2.62 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
ClickHouseonKuberneteskubernetesclickhouseSyncClickhousewithMySQLMongoDBC++UDFInContinuetouseasTSDBMachineLearning
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩