ClickHouse在B站海量数据场景的落地实践Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 HDFS/Hive Kafka/Databus 离线接入 ( Service v Berserker数据源管理: Ø 建表 Ø 修改表元数据 Ø 表元数据管理 v Yuuni: Ø 屏蔽集群信息 Ø 原⽣JDBC,HTTP接⼜ Ø 读写分离 Ø 动态查询缓存 Ø 流量控制 v 监控管理平台: Ø 统计⼤盘 Ø 回归测试 Ø 接⼊评估 Ø 数据迁移 Ø 数据重平衡 v 交互式分析查询:Superset提供即时查询能⼒ v 离线写⼊服务 ClickHouse集群容器化,提升物理集群资源使⽤率 v ClickHouse倒排索引调研与改造,提升⽇志检索性能 v 丰富ClickHouse编码类型,拓展zorder应⽤场景,提升圈选计算性能 v ClickHouse存算分离探索,降低集群扩容成本 Q&A0 码力 | 26 页 | 2.15 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条盘,单块盘的大小限制太大 cpu需要根据实际情况而定 解决: 1:机器的内存推荐128G+ 2:采用软连接的方式,把不同的表分布到不同的盘上面,这样一台机器可以挂载更多的盘 最新版本的”冷热数据分离”特性,曲线救国? 我们遇到的问题 order by (timestamp, eventType) or order by (eventType, timestamp) 业务场景 1:趣头条和0 码力 | 14 页 | 1.10 MB | 1 年前3
8. Continue to use ClickHouse as TSDBsum(time_series.sum) What we do QingCloud ChronusDB 青云 QingCloud 自研的一 款高性能、具备强大 分析 能力的时序数据库产品 高性能并发读写 • 千万数据点并发实时写入 • 引入辅助索引,加快数据检索 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过 Rollup 功能,对历史数据做聚合,减少数据量0 码力 | 42 页 | 911.10 KB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎ALTER TABLE A REPLACE PARTITION 分区名 FROM A_temp 全球敏捷运维峰会 广州站 针对ClickHouse的保护机制 1. 被动缓存; 2. 主动缓存; 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø0 码力 | 15 页 | 1.33 MB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元max_bytes_before_external_sort max_bytes_before_external_group_by 2. 用户并发量一上来,负载太高 解决:目前是在中间加redis缓存0 码力 | 14 页 | 3.03 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰Block … DataNode-3 DataNode-1 指标计算平台 Ø 分布式计算 • 并行计算 Ø 列式存储 • 按需加载减少IO • 可支持大量列 Ø 动态位图索引 • 缓存上次结果 • 成本低、命中率高 核心特点 Bitmap Filter Builder Dynamic Bitmap Index Cache Bitmap Index Generator0 码力 | 26 页 | 3.58 MB | 1 年前3
共 6 条
- 1













