ClickHouse在B站海量数据场景的落地实践基于ClickHouse的交互式OLAP技术架构 Cluster-01 Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 原⽣写⼊⽅式消耗ClickHouse Server资源,影响查询性能 v 实时写⼊任务长期占⽤资源,故障恢复的时间和运维成本较⾼ v 基于中间存储的Bulkload⽅案降低ClickHouse Server压⼒ Bulkload v 基于中间存储的Bulkload可以降低ClickHouse Server压⼒ v 基于中间存储的Bulkload受HDFS和⽹络稳定性影响,且传输成本较⾼ v 直达ClickH 直达ClickHouse的Bulkload稳定性,性能都更佳 Unique Engine v ⽬标:⽀持UpSert,Delete操作,提升查询性能 v 设计:delete on insert Unique Engine v write-write冲突依靠table level lock控制 v write-merge冲突: Unique Engine v 常驻内存模式对内存消耗很⼤ v ⾮常驻内存模式index0 码力 | 26 页 | 2.15 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条趣头条 王海胜 提纲 • 业务背景 • 集群现状 • 我们遇到的问题 业务背景 基于storm的实时指标的计算存在的问题 1:指标口径(SQL) -> 实时任务 2:数据的回溯 3:稳定性 业务背景 什么是我们需要的? 1:实时指标SQL化 2:数据方便回溯,数据有问题,方便恢复 3:运维需要简单 4:计算要快,在一个周期内,要完成所有的指标的计算 集群现状 100+台32核128G ad only mode”,插入失败 分析: clickhouse对zookeeper的依赖还是很重的,有大量的数据需要写到zookeeper上面,数据Part都在 zookeeper上面有个节点与之对应以及表的元数据信息等等. 解决: 1:zookeeper机器的snapshot文件和log文件最好分盘存储(推荐SSD)提高ZK的响应 2:zookeeper的snapshot文件存储盘不低于1T0 码力 | 14 页 | 1.10 MB | 1 年前3
6. ClickHouse在众安的实践集智平台可视化交互分析 数据加工的链路与数据价值发现 竞争优势 分析成熟度 洞察与应对 预测与行动 源数据 数据清洗 标准报表 OLAP系统 商务智能(BI) 机器学习建模 人工智能优化 发生了什么? 为什么发生? 什么会发生? 什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 02 集智平台 开 发 工 具 基 础 设 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理 • 支持算法模型结果的可重现、可审计 支持算法模型结果的可重现、可审计 • 缓解AI/机器学习带来的潜在伦理与法律担忧 全生命周期管理 追溯与可重现 洞察平台架构 Why Clickhouse? Clickhosue 性能 高效的数据导入和查询性能 开源 低成本,免费 压缩比 高度的数据压缩比,存储成本更小 面向列 真正的面向列存储, 支持高维度表 易观开源OLAP引擎测评报告 洞察数据模型+Clickhouse 使用效果0 码力 | 28 页 | 4.00 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰一切以用户价值为依归 2 • Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 5 部署与监控管理 1 生产环境部署方案: Distributed Shard02 Shard03 Load Balancing 一切以用户价值为依归 6 部署与监控管理 1 线性平滑扩容: 扩容: 1.安装新部署新的shard分片机器 2.新shard上创建表结构 3.批量修改当前集群的配置文件增加新的分片 4.名字服务添加节点 一切以用户价值为依归 7 部署与监控管理 1 大批量,少批次 WriteModel BatchSize RowLengt 413 NO 一切以用户价值为依归 8 部署与监控管理 1 应用监控-业务指标: 一切以用户价值为依归 9 部署与监控管理 1 服务监控-错误日志: 一切以用户价值为依归 10 部署与监控管理 1 服务监控-请求指标: 一切以用户价值为依归 11 部署与监控管理 1 服务监控-扫描详情: 一切以用户价值为依归 12 部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归0 码力 | 26 页 | 3.58 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践速度快 2. 特性发布快 3. 软件质量高 4. 物化视图 5. 高基数查询 6. 精确去重计数(count distinct) 3 精确去重计数性能测试 4亿多的数据集上,去重计算出6千万整形数值, 非精确去重函数:uniq、uniqHLL12、uniqCombined 精确去重函数:uniqExact、groupBitmap 函数 29% uniqExact(id) 50.437 63039307 0 0% groupBitmap(id) 7.038 63039307 0 0% 4 精确去重计数性能测试 1.554 1.341 1.613 50.437 7.038 0 10 20 30 40 50 60 时长 结论: • 整形值精确去重场景,groupBitmap 46 0.29 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 误差率 精确去重计数性能测试 6 ClickHouse在苏宁使用场景 OLAP平台存储引擎 -- 存储时序数据、cube加速数据,应用亍高基数查询、精确去重场景。 运维监控 -- 实时聚合分析监控数据,主要使用物化视图技术。0 码力 | 32 页 | 1.47 MB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 system.query_log表,记录已经 执行的查询记录 query:执行的详细SQL,查询相关记录可以 根据SQL关键字筛选该字段 query_duration_ms:执行时间 memory_usage:占用内存 read_rows和read_bytes :读取行数和大小 result_rows和result_bytes :结果行数和 大小 以上信息可以简单对比SQL执行效果 全球敏捷运维峰会 广州站 采用ClickHouse后平台的查询性能 全球敏捷运维峰会 广州站 ClickHouse应用小结 • 数据导入之前要评估好分区字段; • 数据导入时根据分区做好Order By; • 左右表join的时候要注意数据量的变化;0 码力 | 15 页 | 1.33 MB | 1 年前3
8. Continue to use ClickHouse as TSDBsum(time_series) to sum(time_series.sum) What we do QingCloud ChronusDB 青云 QingCloud 自研的一 款高性能、具备强大 分析 能力的时序数据库产品 高性能并发读写 • 千万数据点并发实时写入 • 引入辅助索引,加快数据检索 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过0 码力 | 42 页 | 911.10 KB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 3 研发中心 36 个 分支机构 4 多名员工 下属公司 14 年+ 14 上市 顾名思义,最小数据块编号与最大数据块编号。这里的 BlockNum是一个整型的自增长编号。如果将其设为n的话 ,那么计数n在单张MergeTree数据表内全局累加,n从1 开始,每当新创建一个分区目录时,计数n就会累积加1 。对于一个新的分区目录而言,MinBlockNum与 MaxBlockNum取值一样,同等于n。 • Level 合并的层级,可以理解为某个分区被合并过的次数。 Level计数与BlockNum有所不同,它并不是全局累加的。 如果单个批次数据小于64K,则继续获取下一批 数据,直至累积到size >= 64K时,生成下一个压缩 数据块。 l 单个批次数据 64K<= size <=1M 如果单个批次数据大小恰好在64K与1M之间,则 直接生成下一个压缩数据块。 l 单个批次数据 size > 1M 如果单个批次数据直接超过1M,则首先按照1M 大小截断并生成下一个压缩数据块。剩余数据继续依 照上述规则执行。此时,会出现一个批次数据生成多0 码力 | 35 页 | 13.25 MB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元clickhouse数仓应用实践 演讲人:朱元 日期: 2019-10-20 所遇问题 目录 CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维0 码力 | 14 页 | 3.03 MB | 1 年前3
共 9 条
- 1













