4. ClickHouse在苏宁用户画像场景的实践8 / 1024 / 1024) 但是如果使用上述的数据结构存储单独一个较大数值的数字id,会造成空间上的浪费,例如 仅存储40亿一个数值也需要477m的空间。也就是说稀疏的Bitmap和稠密的占用空间相 同。通常会使用一种bitmap压缩算法迚行优化。 RoaringBitmap是一种已被业界广泛使用的高效的bitmap压缩算法,使用者包括Spark、 Hive、ElasticSe Array Container Run Container Bitmap Container 10 RoaringBitmap原理介绍 11 丌仅数据结构设计精巧,而且还有 很多高效的Bitmap计算函数。 稀疏数据,劢态分配 最大存储:4096元素 最大空间:8KB 连续数据,劢态分配 最大存储:65536元素 最大空间:128KB0 码力 | 32 页 | 1.47 MB | 1 年前3
6. ClickHouse在众安的实践集智平台可视化交互分析 数据加工的链路与数据价值发现 竞争优势 分析成熟度 洞察与应对 预测与行动 源数据 数据清洗 标准报表 OLAP系统 商务智能(BI) 机器学习建模 人工智能优化 发生了什么? 为什么发生? 什么会发生? 什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 02 集智平台 JStorm, Spark Streaming, Flink 离线/实时任务监控 数据、模型存储 Hive, HBase, Clickhouse, Kylin 数据接入 消 息 中 间 件 模型、 算法 模版 机器学习平台 Antron 机器人平台 X-Insight 数据洞察平台 X-Zatlas 数据可视化平台 模板 X-BI 数据探索平台 图像分类 平台 OCR工具 链 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理 • 支持算法模型结果的可重现、可审计 • 缓解AI/机器学习带来的潜在伦理与法律担忧0 码力 | 28 页 | 4.00 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰一切以用户价值为依归 2 • Clickhouse 的部署与监控管理 • Clickhouse 的应用实践 iData 目录 部署与监控管理 一切以用户价值为依归 3 1 4 部署与监控管理 1 高内存,廉价存储: 单机配置: Memory128G CPU核数24 SATA20T,RAID5 万兆网卡 一切以用户价值为依归 5 部署与监控管理 1 生产环境部署方案: Distributed Shard02 Shard03 Load Balancing 一切以用户价值为依归 6 部署与监控管理 1 线性平滑扩容: 扩容: 1.安装新部署新的shard分片机器 2.新shard上创建表结构 3.批量修改当前集群的配置文件增加新的分片 4.名字服务添加节点 一切以用户价值为依归 7 部署与监控管理 1 大批量,少批次 WriteModel BatchSize RowLengt 413 NO 一切以用户价值为依归 8 部署与监控管理 1 应用监控-业务指标: 一切以用户价值为依归 9 部署与监控管理 1 服务监控-错误日志: 一切以用户价值为依归 10 部署与监控管理 1 服务监控-请求指标: 一切以用户价值为依归 11 部署与监控管理 1 服务监控-扫描详情: 一切以用户价值为依归 12 部署与监控管理 1 服务监控-响应耗时: 一切以用户价值为依归0 码力 | 26 页 | 3.58 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯远光软件 大数据事业部/平台开发部 总经理 资深架构师,腾讯云TVP专家 10多年IT从业经验,精通Java、Nodejs等语言方向 著有: 《企业级大数据平台构建:架构与实现》、 《ClickHouse原理解析与开发实战》(连载写作中) 珠海总部园 区占地面积 6 万平方米 珠海、北京、武汉 3 研发中心 36 个 分支机构 4 多名员工 下属公司 14 年+ 14 上市 类型,例如String、Float等。则通过128位Hash 算法取其Hash值作为分区ID的取值。 分区目录的命名规则 PartitionID_MinBlockNum_MaxBlockNum_Level • PartitionID 分区ID,无需多说,对于分区ID的规则在上一小节中已 经做过了详细的阐述。 • MinBlockNum和MaxBlockNum 顾名思义,最小数据块编号与最大数据块编号。这里的 Block ,那么计数n在单张MergeTree数据表内全局累加,n从1 开始,每当新创建一个分区目录时,计数n就会累积加1 。对于一个新的分区目录而言,MinBlockNum与 MaxBlockNum取值一样,同等于n。 • Level 合并的层级,可以理解为某个分区被合并过的次数。 Level计数与BlockNum有所不同,它并不是全局累加的。 对于每一个新创建的分区目录而言,其初始值均为0。之 后,以分区为单位,如果相同分区发生合并动作,则在相0 码力 | 35 页 | 13.25 MB | 1 年前3
8. Continue to use ClickHouse as TSDB分析 能力的时序数据库产品 高性能并发读写 • 千万数据点并发实时写入 • 引入辅助索引,加快数据检索 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过 Rollup 功能,对历史数据做聚合,减少数据量 稳定可扩展 • 分布式架构 • 数据多副本存储 • 服务高可用 Thanks For You0 码力 | 42 页 | 911.10 KB | 1 年前3
ClickHouse在B站海量数据场景的落地实践基于ClickHouse的交互式OLAP技术架构 Cluster-01 Cluster-02 Cluster-n 。。。 ClickHouse Yuuni 定制开发的 ClickHouse-JDBC 与ClickHouse兼容的 HTTP 接口 请求管理/流量控制 查询缓存 查询分发器 查询处理器 ClickHouse 监控管理平台 元数据管理 库表管理 权限管理 埋点分析 报表平台 不同事件有不同的私有属性字段。 v 动态选择的过滤维度和聚合维度。 v 交互式分析延迟要求 (5秒内)。 路径分析 v 选定中⼼事件。 v 按时间窗⼜确定上下游事件。 v 离线Spark与计算出事件路径及相关⽤户id的RBM。 v 离线计算结果导⼊ClickHouse做交互式路径分析。 漏斗分析 v 预定义事件漏⽃ v ⽀持各个事件单独设置过滤条件 v 查询时间跨度最⼤⼀个⽉ 数据按user id做Sharding,查询下推 Future Work Future Work v ClickHouse集群容器化,提升物理集群资源使⽤率 v ClickHouse倒排索引调研与改造,提升⽇志检索性能 v 丰富ClickHouse编码类型,拓展zorder应⽤场景,提升圈选计算性能 v ClickHouse存算分离探索,降低集群扩容成本 Q&A0 码力 | 26 页 | 2.15 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条ad only mode”,插入失败 分析: clickhouse对zookeeper的依赖还是很重的,有大量的数据需要写到zookeeper上面,数据Part都在 zookeeper上面有个节点与之对应以及表的元数据信息等等. 解决: 1:zookeeper机器的snapshot文件和log文件最好分盘存储(推荐SSD)提高ZK的响应 2:zookeeper的snapshot文件存储盘不低于1T0 码力 | 14 页 | 1.10 MB | 1 年前3
共 7 条
- 1













