ClickHouse在B站海量数据场景的落地实践Map隐式列 v Map隐式列将每个Key存储为独⽴列 v Map隐式列查询时只读取需要的隐式列 Bulkload v 原⽣写⼊⽅式消耗ClickHouse Server资源,影响查询性能 v 实时写⼊任务长期占⽤资源,故障恢复的时间和运维成本较⾼ v 基于中间存储的Bulkload⽅案降低ClickHouse Server压⼒ Bulkload v 基于中间存储的Bulkload可以降低ClickHouse write-write冲突依靠table level lock控制 v write-merge冲突: Unique Engine v 常驻内存模式对内存消耗很⼤ v ⾮常驻内存模式index load过程慢 v 多并发加载优化索引加载速度: 日志 日志 v Elastic To ClickHouse迁移,降本增效 v OTEL标准化⽇志采集 v 统⼀scheme⽀持 日志 v ClickHouse较ES写⼊吞吐量提升近10倍 ⽀持各个事件单独设置过滤条件 v 查询时间跨度最⼤⼀个⽉ v 数据按user id做Sharding,查询下推 Future Work Future Work v ClickHouse集群容器化,提升物理集群资源使⽤率 v ClickHouse倒排索引调研与改造,提升⽇志检索性能 v 丰富ClickHouse编码类型,拓展zorder应⽤场景,提升圈选计算性能 v ClickHouse存算分离探索,降低集群扩容成本0 码力 | 26 页 | 2.15 MB | 1 年前3
2. ClickHouse MergeTree原理解析-朱凯珠海、北京、武汉 3 研发中心 36 个 分支机构 4 多名员工 下属公司 14 年+ 14 上市 千+ 大 家 用优质的产品和服务 推动企业管理和社会进步 产品服务 l 集团资源管理 l 资产全寿命周期管理 l 集团风险管控 l 企业大数据及商业智能 l 企业云服务 l 智能机器人应用 l 集团IT治理 l …… l 能源产业链 l 区域能源管理 l 能源大数据 九三学社 珠海特区报 三峡电能 秦山核电 香港医思医疗 国家能源集团 安徽皖能 南方电网 金川集团 金晶集团 中航集团 比亚迪股份 互联数据资源、为组织数字资产管理运营、数据探索、分析赋能! 数据汇聚 专业的数据资源管理 自助分析 价值挖掘 多维探索 灵活 快速 自助 洞察 预警 消息 交互 Agenda. 数据分区 01 / 一级索引&二级索引 02 / 数据存储 直接生成下一个压缩数据块。 l 单个批次数据 size > 1M 如果单个批次数据直接超过1M,则首先按照1M 大小截断并生成下一个压缩数据块。剩余数据继续依 照上述规则执行。此时,会出现一个批次数据生成多 个压缩数据块的情况。 每个压缩数据块的体积,按照其压缩前的数据字节大小,都被严格的控制在64K~1M之间,其上下限分 别由min_compress_block_size(默认65536)与max_0 码力 | 35 页 | 13.25 MB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践特性发布快 3. 软件质量高 4. 物化视图 5. 高基数查询 6. 精确去重计数(count distinct) 3 精确去重计数性能测试 4亿多的数据集上,去重计算出6千万整形数值, 非精确去重函数:uniq、uniqHLL12、uniqCombined 精确去重函数:uniqExact、groupBitmap 函数 时长(秒) 询数据 痛点: 标签导入到ES的时间过长,需要等待各种业 务数据准备就绪,才能迚行关联查询。 新增戒者修改标签,丌能实时迚行,涉及到 ES文档结构的变化。 ES对资源消耗比较大,属亍豪华型配置。 ES的DSL诧法对用户丌太友好,用户学习成 本高。 Kafka Flink 18 ClickHouse替换ES存储标签数据 ClickHouse 支持标签数据实时更新,增加标签、删除标签、修改标签。 标签表达式和查询SQL对用户来说比较友好。 相对亍ElasticSearch的配置,可以节约一半硬件资源。 速度快 友好 省钱 实时 29 社区贡献 Bitmap功能 https://github.com/ClickHouse/ClickHouse/pull/42070 码力 | 32 页 | 1.47 MB | 1 年前3
6. ClickHouse在众安的实践异构数据治理、协同平台 元数据管理/数据集市 数据权限管理 | 大数据、流数据建模 | 数据/模型生命周期管理 资源调度 业务系统 开 发 工 具 基 础 设 施 模型 反馈 智能应用 开放与敏捷 • 大数据、流数据统一建模管理 • 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理0 码力 | 28 页 | 4.00 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰Analysis 数据报表 多 维 聚 合 iData大数据分析引擎 TGMars TGSpark & Storage 大数据仓库 Hadoop Data Lake 计算引擎 MR & Spark Data Warehouse OLTP Big Data Analysis 多 维 聚 合 iData New 超融合OLAP 大数据分析 引擎TGMars 多 维 提 取 关 联0 码力 | 26 页 | 3.58 MB | 1 年前3
2. Clickhouse玩转每天千亿数据-趣头条部分复杂累时查询30S内完成 集群现状 我们遇到的问题 关于机器的配置 早期集群机器配置16核64G 一块1.7T本地SSD 问题: 1:内存限制,对于一些大的查询会出现内存不够问题 2:存储限制,随着表越来多,磁盘报警不断 3:cpu限制 64G对于一些大表(每天600亿+)的处理,很容易报错,虽然有基于磁盘解决方案,但是会影响速度 clickhouse的数据目录还不支持多个数据盘,单块盘的大小限制太大 cpu需要根据实际情况而定 1:zookeeper机器的snapshot文件和log文件最好分盘存储(推荐SSD)提高ZK的响应 2:zookeeper的snapshot文件存储盘不低于1T 3:做好zookeeper集群和clickhouse集群的规划,可以多套zookeeper集群服务一套clickhouse集群 3.1:zookeeper集群的znode最好能在400w以下(这个时候snapshot文件到达2G+) 3.2:注意监控zookeeper的指标(排队请求0 码力 | 14 页 | 1.10 MB | 1 年前3
8. Continue to use ClickHouse as TSDB测系统未来趋势 不断收集市场变化信 息预测股价涨跌 不断的汇总日成交量从 而制定商业规划 不断收集温度,坐标,方向 ,速度等指标,优化路线和 驾驶方式 ► 上述业务数据特点: ► (1) 数据多 ► (2) 旧数据趋于不变 ► (3) 新数据更有价值 ► (4) 数据总是随时间变化而不断变化 Why we choose it ► 解决方案 ► (1) Row-Orient Database 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过 Rollup 功能,对历史数据做聚合,减少数据量 稳定可扩展 • 分布式架构 • 数据多副本存储 • 服务高可用 Thanks For You0 码力 | 42 页 | 911.10 KB | 1 年前3
3. 数仓ClickHouse多维分析应用实践-朱元主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址: https://github.com/edp963/davinci 03 1. Memory limit (for query) exceeded0 码力 | 14 页 | 3.03 MB | 1 年前3
蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎针对ClickHouse的保护机制 1. 被动缓存; 2. 主动缓存; 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡; Ø 灵活创建不同的虚拟集群用于适当的场合; Ø 随时调整服务器,新增/缩减服务器; 分布式: k8s的集群式部署 全球敏捷运维峰会0 码力 | 15 页 | 1.33 MB | 1 年前3
共 9 条
- 1













