蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎不支持事务,没有真正的update/delete; 2. 不支持高并发,可以根据实际情况修改qps相关配置文件; 全球敏捷运维峰会 广州站 StarRocks的特点 优点: 1. 支持标准的SQL语法,兼容MySql协议; 2. MPP架构,扩缩容非常简单方便; 3. 支持高并发查询; 4. 跨机房部署,实现最低成本的DR 缺点: 1. 不支持大规模的批处理; 2. 支持insert into,但最理想的是消费Kafka; ALTER TABLE A REPLACE PARTITION 分区名 FROM A_temp 全球敏捷运维峰会 广州站 针对ClickHouse的保护机制 1. 被动缓存; 2. 主动缓存; 全球敏捷运维峰会 广州站 ClickHouse集群架构 Ø 虚拟集群最少两台机器在不同的机房; Ø 数据独立,多写,相互不干扰; Ø 数据读取通过应用程序做负载平衡;0 码力 | 15 页 | 1.33 MB | 1 年前3
2. 腾讯 clickhouse实践 _2019丁晓坤&熊峰iData画像服务需要升级 Ø扩展性差 数据导入后结果不支持修改/追加 Ø数据类型有限 数据类型只能支持数字类型 Ø数据量有限 数据量达到10亿级以上查询效率有所降低 Ø单表计算 不能进行多表关联计算 一切以用户价值为依归 21 业务应用实践 iData 2 为什么选择ClickHouse • SQL • OLAP • 超高性能 • 列式存储 • 统计函数 • 线性扩展 • 驱动丰富0 码力 | 26 页 | 3.58 MB | 1 年前3
8. Continue to use ClickHouse as TSDB• 引入辅助索引,加快数据检索 速度 低成本存储 • 列式存储结合高效的编码 • Delta、XOR 等适合时序场景的压缩算法 • 通过 Rollup 功能,对历史数据做聚合,减少数据量 稳定可扩展 • 分布式架构 • 数据多副本存储 • 服务高可用 Thanks For You0 码力 | 42 页 | 911.10 KB | 1 年前3
4. ClickHouse在苏宁用户画像场景的实践Value Bitmap Container 0 1 1 0 ① ② ③ ④ ClickHouse集成RoaringBitmap Bitmap字段类型,该类型扩展自AggregateFunction类型,字段类型定义: AggregateFunction( groupBitmap, UInt(8|16|32|64)) 参考: https://clickhouse0 码力 | 32 页 | 1.47 MB | 1 年前3
共 4 条
- 1













