积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(8)Lean(8)

语言

全部英语(8)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 8 个.
  • 全部
  • 后端开发
  • Lean
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Theorem Proving in Lean Release 3.23.0

    constant m : nat -- m is a natural number constant n : nat constants b1 b2 : bool -- declare two constants at once /- check their types -/ #check m -- output: nat #check n #check n + 0 -- nat #check m m * (n + 0) -- nat #check b1 -- bool #check b1 && b2 -- "&&" is boolean and #check b1 || b2 -- boolean or #check tt -- boolean "true" -- Try some examples of your own. Any text between the /- and m n : nat constant f : nat → nat -- type the arrow as "\to" or "\r" constant f' : nat -> nat -- alternative ASCII notation constant f'' : N → N -- alternative notation for nat constant p : nat × nat
    0 码力 | 173 页 | 777.93 KB | 1 年前
    3
  • pdf文档 The Hitchhiker’s Guide to Logical Verification

    can be defined as follows: inductive nat : Type | zero : nat | succ : nat → nat The first line announces to the world that we are introducing a new type called nat, intended to represent the natural numbers The second and third line de- clare two new constructors, nat.zero : nat and nat.succ : nat → nat, that can be used to build values of type nat. Following an established convention in com- puter science requires an argument of type nat to produce a value of type nat. The terms nat.zero nat.succ nat.zero nat.succ (nat.succ nat.zero) ... denote the diferent values of type nat—zero, its successor, its successor’s
    0 码力 | 215 页 | 1.95 MB | 1 年前
    3
  • pdf文档 An Introduction to Lean

    freely and inductively by a constant, zero, and a unary function succ: inductive nat : Type | zero : nat | succ : nat → nat If you copy this definition into the editor window at right you will see that avoid conflicting with the standard definition, which is loaded by default. Even so, choosing the name nat means that within the namespace this identifier is overloaded, which can cause confusion. Thus we will go on to define addition by recursion on the second argument: def add : nat → nat → nat | m nat.zero := m | m (nat.succ n) := nat.succ (add m n) Lean compiles definitions like these down to a single axiomatic
    0 码力 | 48 页 | 191.92 KB | 1 年前
    3
  • pdf文档 The Lean Reference Manual Release 3.3.0

    (x y z : N) : N := x + y + z #check ex1 1 2 3 def id1 (α : Type u) (x : α) : α := x #check id1 nat 3 3.3. Implicit Arguments 13 The Lean Reference Manual, Release 3.3.0 #check id1 _ 3 def id2 {α Assertions The core library contains a number of basic data types, such as the natural numbers (N, or nat), the integers (Z), the booleans (bool), and common operations on these, as well as the usual logical 5 in x + 3 def f x := x + 3 #reduce f 5 #eval f 5 #reduce @nat.rec (λ n, N) (0 : N) (λ n recval : N, recval + n + 1) (5 : N) #eval @nat.rec (λ n, N) (0 : N) (λ n recval : N, recval + n + 1) (5 : N)
    0 码力 | 67 页 | 266.23 KB | 1 年前
    3
  • pdf文档 Programming in Lean Release 3.4.2

    computational interpretation, which is to say, they can be evaluated. Any closed term of type nat – that is, any term of type nat without free variables – evaluates to a numeral, as long as it is defined in the computational computational fragment of Lean’s foundational framework. Similarly, any closed term of type list nat evaluates to a list of numerals, and any closed term of type bool evaluates either to the boolean value interpretation. Lean’s standard library defines a number of data types, such as nat, int, list, and bool. #check nat #print nat #check int #print int #check list #print list #check bool #print bool 3
    0 码力 | 51 页 | 220.07 KB | 1 年前
    3
  • pdf文档 Lean 2 Quick Reference

    definition or theorem, or using the attribute or local attribute commands. Example: local attribute nat.add nat.mul [reducible]. reducible : unfold at any time during elaboration if necessary quasireducible anonymous binders (like lambda, take, obtain, etc.) by enclosing the type in backticks, as in λ `nat`, `nat` + 1. This introduces a variable of the given type in the context with a hidden name. Tactic Mode Types Π Pi \Pi → -> \to, \r, \implies Σ Sigma \S, \Sigma × prod \times ￿ sum \union, \u+, \uplus N nat \nat Z int \int Q rat \rat R real \real When you open the namespaces prod and sum, you can use * and
    0 码力 | 9 页 | 62.97 KB | 1 年前
    3
  • pdf文档 Lean 4

    stxStack := s.stxStack.push n } def mkNode (s : ParserState) (k : SyntaxNodeKind) (iniStackSz : Nat) : ParserState := match s with | ⟨stack, pos, cache, err⟩ => let newNode := Syntax.node k (stack
    0 码力 | 20 页 | 1.78 MB | 1 年前
    3
  • pdf文档 Lean in Lean

    stxStack := s.stxStack.push n, .. s } def mkNode (s : ParserState) (k : SyntaxNodeKind) (iniStackSz : Nat) : ParserState := match s with | ⟨stack, pos, cache, err⟩ => let newNode := Syntax.node k (stack
    0 码力 | 54 页 | 4.78 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
TheoremProvinginLeanRelease3.23TheHitchhikerGuidetoLogicalVerificationAnIntroductionReferenceManual3.3Programming3.4Quick
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩