积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(4)Apache Doris(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 4 个.
  • 全部
  • 数据库
  • Apache Doris
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 百度智能云 Apache Doris 文档

    'M'不会匹配‘MJ’。如果需要确保表达式能够正常work,可以使用一些函数,如upper(), lower(), substr(), trim()。 举例: 比较操作符 比较操作符 比较操作符用来判断列和列是否相等或者对列进行排序。=, !=, <>, <, <=, >, >=可以适用所有数据类型。其中<>符号是不等于 的意思,和!=的功能是一样的。IN和BETWEEN操作符提供更简短的表达来描述相等、小于、大小等关系的比较。 PARTITION(p1, p2, p3) Baidu 百度智能云文档 SQL手册 15 需配合 MEREGE 导入模式一起使用,仅针对 Unique Key 模型的表。用于指定导入数据中表示 Delete Flag 的列和计算 关系。 仅针对 Unique Key 模型的表。用于指定导入数据中表示 Sequence Col 的列。主要用于导入时保证数据顺序。 用于指定例行导入作业的通用参数。 目前我们支持以下参数: 为 example_db 的 example_tbl 创建一个名为 test1 的 Kafka 例行导入任务。并且使用条件过滤。 7. 导入数据到含有 sequence 列的 Unique Key 模型表中 CREATE CREATE ROUTINE ROUTINE LOAD LOAD example_db example_db..test1 test1 ON ON example_tbl
    0 码力 | 203 页 | 1.75 MB | 1 年前
    3
  • pdf文档 Apache Doris 在美团外卖数仓中的应用实践

    量业务,预设维度分析场景下表现良好,但在变化维的场景下生产成本巨大。例如,如果使用最 新商家类型回溯商家近三个月的表现,需要重新计算三个月的Cube,需花费几个小时,来计算近 TB的历史数据。另外,应对非预设维度分析,MOLAP模型需要重新进行适配计算,也需要一定的 迭代工作。 明细数据的交互 业务分析除了宏观数据之外,对明细数据查询也是一种刚需。通常大家会选择MySQL等关系型DB 作为明细数据的快速检索查询,但当业务成 iteblog.com 下图是MOLAP模式与ROLAP模式下应用方案的比较: MOLAP模式的劣势 1. 应用层模型复杂,根据业务需要以及Kylin生产需要,还要做较多模型预处理。这样在不同 的业务场景中,模型的利用率也比较低。 2. Kylin配置过程繁琐,需要配置模型设计,并配合适当的“剪枝”策略,以实现计算成本与查 询效率的平衡。 3. 由于MOLAP不支持明细数据的查询,在“ 较多的预处理伴随着较高的生产成本。 ROLAP模式的优势 1. 应用层模型设计简化,将数据固定在一个稳定的数据粒度即可。比如商家粒度的星形模型 ,同时复用率也比较高。 2. App层的业务表达可以通过视图进行封装,减少了数据冗余,同时提高了应用的灵活性, 降低了运维成本。 3. 同时支持“汇总+明细”。 4. 模型轻量标准化,极大的降低了生产成本。 综上所述,在变化维、非预设维、细粒度
    0 码力 | 8 页 | 429.42 KB | 1 年前
    3
  • pdf文档 SelectDB案例 从 ClickHouse 到 Apache Doris

    具有以下的优势: Apache Doris 的优势:  Doris 架构极简易用,部署只需两个进程,不依赖其他系统,运维简单;兼容 MySQL 协议,并且使用标准 SQL。  支持丰富的数据模型,可满足多种数据更新方式,支持部分列更新。  支持对 Hive、Iceberg、Hudi 等数据湖和 MySQL、Elasticsearch 等数据库的联邦查 询分析。  导入方式多样,支持从 术支持团队,在使用过程中遇到问题均能快速得到响应解决。 同时我们也利用 Doris 的特性,解决了架构 1.0 中较为突出的问题。  数仓层:Apache Doris 的 Aggregate 数据模型可支持部分列实时更新,因此我们去 掉了 DWM 集市层的构建,直接增量到 Doris / ES 中构建宽表,解决了架构 1.0 中 上游数据更新延迟导致整个宽表延迟的问题,进而提升了数据的时效性。数据(指 逻辑,离线和实时可对多个开发逻辑进行复用,灵活度较高。 数据模型选择 目前我们生产环境所使用的版本为 Apache Doris 1.1.3,我们对其所支持的 Unique 主键模 型、Aggregate 聚合模型和 Duplicate 明细模型进行了对比 ,相较于 Unique 模型和 Duplicate 模型,Aggregate 聚合模型满足我们部分列更新的场景需求: Aggregate 聚合模型可以支持多种预聚合模式,可以通过
    0 码力 | 12 页 | 1.55 MB | 1 年前
    3
  • pdf文档 Doris的数据导入机制以及原子性保证

    2009 • 随百度业务飞速发展,对 Doris的性能、可用性、拓 展性进行了全面升级 • 承担百度所有统计报表业务 2012 01 Doris简介 04 05 06 • 全新的数据模型,查询存储 效率大幅提升 • MPP框架,支持分布式计算 2013 • 精简架构、统一用户客户端, 实现高可用 • 正式开始对外提供服务 2015 • 正式开源 • 希望能帮助更多人、让更多
    0 码力 | 33 页 | 21.95 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
百度智能ApacheDoris文档Apache Doris美团SelectDB案例ClickHouse数据导入机制以及原子保证
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩