Doris的数据导入机制以及原子性保证杨政国 百度资深研发工程师 Doris Committer 01 Doris简介 导入的问题 02 03 Doris中的导入 使用案例 04 Doris简介 01 • 基于MPP(大规模并行处理)架构的分析型数据库 01 Doris简介 • 性能卓越,PB级别数据毫秒/秒级响应 • 适用于高并发、低延时下的多维分析、实时报表等场景 • 由百度自研,2017年开源,2018年贡献给Apache社区后更名为 架构优雅,单集群可水平扩展至200台以上 • 查询性能业界领先 • 高并发查询,100台集群可达10w QPS • 流式导入单节点100MB/s,小批量导入毫 秒延迟 • 数据、元数据高可用,线上稳定服务6年 • 机器故障副本自动迁移 01 Doris简介 MySQL Tools (MySQL Networking) FE (Leader,JAVA) FE (Follower,JAVA) FE (Follower0 码力 | 33 页 | 21.95 MB | 1 年前3
Apache Doris 在美团外卖数仓中的应用实践ROLAP :基于实时的大规模并行计算,对集群的要求较高。MPP引擎的核心是通过将数据分散,以实现 CPU、IO、内存资源的分布,来提升并行计算能力。在当前数据存储以磁盘为主的情况下,数据S can需要的较大的磁盘IO,以及并行导致的高CPU,仍然是资源的短板。因此,高频的大规模汇 总统计,并发能力将面临较大挑战,这取决于集群硬件方面的并行计算能力。传统去重算法需要 大量计算资源,实时的大规模去重指标对CP0 码力 | 8 页 | 429.42 KB | 1 年前3
SelectDB案例 从 ClickHouse 到 Apache Doris严重,牵一发而动全身,容易出现集群稳定性问题,对于我们来说,同时维护 ClickHouse 和 Elasticsearch 两套引擎的连接与查询,成本和难度都比较高。 除此之外,ClickHouse 由国外开源,交流具有一定的语言学习成本,遇到问题无法准确反 馈、无法快速获得解决,与社区沟通上的阻塞也是促进我们进行架构升级的因素之一。 数据架构 2.0 3 基于架构 1.0 存在的问题和 ClickHouse0 码力 | 12 页 | 1.55 MB | 1 年前3
百度智能云 Apache Doris 文档Node(BE)的 HTTP 协议端口,默认为 8040。 私有化部署用户可以使用 Leader Node(FE)的 HTTP 协议端口,默认为 8030。但须保证客户端所在机器网络能够联通 Compute Node 所在机器。 本文档主要通过 cURL 命令来介绍 Stream Load 的使用方式 HTTP 的请求方式为 扫描-导出 扫描-导出 exec_mem_limit exec_mem_limit0 码力 | 203 页 | 1.75 MB | 1 年前3
共 4 条
- 1













