Doris的数据导入机制以及原子性保证等场景 • 由百度自研,2017年开源,2018年贡献给Apache社区后更名为 Apache Doris 系统定位 • 百度内部统称其为“百度数据仓库Palo”,同时百度云上提供Palo的企业级托管版本 发展历程 01 02 03 • 1.0版本正式上线 • 应用于百度凤巢统计报表的 需求场景,上线后数据更新 频率从天级提升至分钟级 2008 • 进行了通用化改造,开始承 GitHub:https://github.com/apache/incubator-doris 欢迎关注Doris微信公众号 更多技术趋势、实践案例、社区活动 欢迎登陆百度智能云官网,体验企业级托管版本Palo 全新UI支持,更有新用户0元三个月优惠活动 Thank You0 码力 | 33 页 | 21.95 MB | 1 年前3
SelectDB案例 从 ClickHouse 到 Apache Doris份冗余的数据。 实时性比较差,由于每个 Source 表产出的时间不一样,往往会因为某些延迟比较 大的 Source 表导致整个数据链路延迟增大。 开发成本较高,该方案只能作为离线方式,若想实现实时方式则需要投入开发资源 进行额外的开发。 而在 Flink 中生成宽表,链路简单、成本低也容易实现,主要流程是:首先用 Spark 将相 关 Source 表最新数据离线导入到 Kafka 中, , TDW 无需维护两份冗余的数据,Kafka 也只需保存最新待导入的数据。同时该方案整体实时性更好且可控,并且大宽表聚合在 Flink 中执行,可灵活加入各种 ETL 逻辑,离线和实时可对多个开发逻辑进行复用,灵活度较高。 数据模型选择 目前我们生产环境所使用的版本为 Apache Doris 1.1.3,我们对其所支持的 Unique 主键模 型、Aggregate 聚合模型和 Duplicate 运维起来比较容易; 高度兼容 MySQL 语法,支持标准 SQL,极大降低开发人员接入使用成本; 支持多种联邦查询方式,支持对 Hive、MySQL、Elasticsearch 、Iceberg 等组件的 联邦查询分析,降低多数据源查询复杂度。 通过以上的方式,使得存储成本降低 42%,开发与时间成本降低了 40% ,成功实现降本提 效,后续我们将继续探索! 未来规划0 码力 | 12 页 | 1.55 MB | 1 年前3
Apache Doris 在美团外卖数仓中的应用实践齐逻辑复杂。 不同业务线需求差异大,指标需要良好扩展性。 由于业务上的复杂性,实时流计算中,需要考虑诸多业务口径的对齐,业务ER模型在合流处理中 开发成本较高,资源占用较大,通过设计基于Doris的准实时生产数仓,可以灵活地实现业务微批 处理,且开发生产成本都比较低。以下为基于Doris的准实时数仓架构设计,是典型的实时Lambd a生产架构: 实现准实时计算方案,需要以下能力的支撑: 实时的写入能力:目前支持Kafka0 码力 | 8 页 | 429.42 KB | 1 年前3
共 3 条
- 1













