积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Apache Flink(11)

语言

全部英语(11)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 • Flink requires a sufficient number of processing slots in order to execute all tasks of an application. • The JobManager cannot restart the application until enough slots become available JobManager failures ??? Vasiliki Kalavri | Boston University 2020 When the JobManager fails all tasks are automatically cancelled. The new JobManager performs the following steps: 1. It requests It requests processing slots. 3. It restarts the application and resets the state of all its tasks to the last completed checkpoint. Highly available Flink setup ??? Vasiliki Kalavri | Boston University
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    TaskManager can execute several tasks at the same time. • It is statically configured with a certain number of processing slots that defines the maximum number of concurrent tasks it can execute. • A processing for each receiving task that any of its tasks need to send data to. Batching in Apache Flink • The TaskManagers ship data from sending tasks to receiving tasks. • The network component of a TaskManager
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    apache.flink.streaming.runtime.tasks.RegularOperatorChain. ˓→initializeStateAndOpenOperators(RegularOperatorChain.java:110) at org.apache.flink.streaming.runtime.tasks.StreamTask.restoreGates(StreamTask ˓→711) at org.apache.flink.streaming.runtime.tasks.StreamTaskActionExecutor$1. ˓→call(StreamTaskActionExecutor.java:55) at org.apache.flink.streaming.runtime.tasks.StreamTask.restoreInternal(StreamTask. ˓→java:687) at org.apache.flink.streaming.runtime.tasks.StreamTask.restore(StreamTask.java:654) at org.apache.flink.runtime.taskmanager.Task.runWithSystemExitMonitoring(Task.java: ˓→958) at org.apache
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    apache.flink.streaming.runtime.tasks.RegularOperatorChain. ˓→initializeStateAndOpenOperators(RegularOperatorChain.java:110) at org.apache.flink.streaming.runtime.tasks.StreamTask.restoreGates(StreamTask ˓→711) at org.apache.flink.streaming.runtime.tasks.StreamTaskActionExecutor$1. ˓→call(StreamTaskActionExecutor.java:55) at org.apache.flink.streaming.runtime.tasks.StreamTask.restoreInternal(StreamTask. ˓→java:687) at org.apache.flink.streaming.runtime.tasks.StreamTask.restore(StreamTask.java:654) at org.apache.flink.runtime.taskmanager.Task.runWithSystemExitMonitoring(Task.java: ˓→958) at org.apache
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    producer slows down according to the rate the consumer recycles buffers. Remote exchange: If tasks run on different worker nodes, the buffer can be recycled as soon as it is on the TCP channel. • The maximum throughput is limited by the processing rate of the slowest task. • Parallel tasks are connected via virtual channels multiplexed over TCP connections: • In the presence of skew 29 Remarks on CFC • Bakcpressure is inflicted on pairs of communicating tasks only • it does not interfere with other tasks sharing the same TCP connection. • CFC maximizes network utilization and
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    watermark captures the progress of upstream stages • minimum of output watermarks of all upstream tasks • The output watermark captures the progress of the stage itself • minimum of input watermarks 1. Watermarks must be monotonically increasing in order to ensure that the event time clocks of tasks are progressing and not going backwards. 2. A watermark with a timestamp T indicates that all subsequent
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    or shared subscription • A logical producer/consumer can be implemented by multiple physical tasks running in parallel • Ιf a producer generates events with high rate, we can balance the load by Publishers and Subscribers are applications. 23 Use-cases • Balancing workloads in network clusters • tasks can be efficiently distributed among multiple workers, such as Google Compute Engine instances.
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the same parallel task have access to the same state • It cannot be accessed by other parallel tasks of the same or different operators Keyed state is scoped to a key defined in the operator’s input one state instance. • The keyed state instances of a function are distributed across all parallel tasks of the function’s operator. Keyed state can only be used by functions that are applied on a KeyedStream:
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    completely processed 3. Copy the state of each task to a remote, persistent storage 4. Wait until all tasks have finished their copies 5. Resume processing and stream ingestion 12 ??? Vasiliki Kalavri | post-snapshot events (order maintained by FIFO channels) Termination is satisfied if initiator can reach all tasks (possible in DAGs via multiple initiators, e.g., sources.) p1 p2 p3 p4 p5 p6 p7 p7 p5 p6 p1 p1 p2 p3 p4 34 ??? Vasiliki Kalavri | Boston University 2020 • Assumptions: • DAG of tasks • Epoch change events triggered on each source task (⟨ep1⟩,⟨ep2⟩,…) • Issued by a coordinator or generated
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    patterns • Raise alerts for abnormal system metrics • Detect invariant violations • Identify outlier tasks Inspired by this paper : “SAQL: A Stream-based Query System for Real- Time Abnormal System Behavior
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
FaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020StreamingoptimizationsPyFlink1.15Documentation1.16FlowcontrolloadsheddingNotionsoftimeprogressingestionpubsubsystemsStatemanagementExactlyoncefaultinApacheCourseintroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩