PyFlink 1.15 Documentationrelease-1.15 (continued from previous page) schema = (Schema.new_builder() .column('id', DataTypes.TINYINT()) .column('data', DataTypes.STRING()) .build()) table = table_env.from_descriptor( TableDescriptor BYTE(), Types.STRING()])) table = t_env.from_data_stream(ds, Schema.new_builder() .column("id", DataTypes.TINYINT()) .column("data", DataTypes.STRING()) .build()) table.get_schema() [8]: root |-- id: TINYINT selecting a column does not trigger the computation but it returns a Column Expression instance. [15]: from pyflink.table.expressions import col type(table.id)==type(col('id')) [15]: True These Column Expressions0 码力 | 36 页 | 266.77 KB | 1 年前3
PyFlink 1.16 Documentationrelease-1.16 (continued from previous page) schema = (Schema.new_builder() .column('id', DataTypes.TINYINT()) .column('data', DataTypes.STRING()) .build()) table = table_env.from_descriptor( TableDescriptor BYTE(), Types.STRING()])) table = t_env.from_data_stream(ds, Schema.new_builder() .column("id", DataTypes.TINYINT()) .column("data", DataTypes.STRING()) .build()) table.get_schema() [8]: root |-- id: TINYINT selecting a column does not trigger the computation but it returns a Column Expression instance. [15]: from pyflink.table.expressions import col type(table.id)==type(col('id')) [15]: True These Column Expressions0 码力 | 36 页 | 266.80 KB | 1 年前3
Streaming in Apache Flinktotal fare collected Lab 1 -- Ride Cleansing Transforming Data Transforming Data public static class EnrichedRide extends TaxiRide { public int startCell; public int endCell; public filter(new RideCleansing.NYCFilter()) .map(new Enrichment()); enrichedNYCRides.print(); public static class Enrichment implements MapFunction{ @Override public EnrichedRide taxiRide) throws Exception { return new EnrichedRide(taxiRide); } } FlatMap Function public static class NYCEnrichment implements FlatMapFunction { @Override public void 0 码力 | 45 页 | 3.00 MB | 1 年前3
Scalable Stream Processing - Spark Streaming and Flinkmain steps to develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2 main steps to develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 2 main steps to develop a Spark stuctured streaming: ▶ 1. Defines a query on the input table, as a static table. • Spark automatically converts this batch-like query to a streaming execution plan. ▶ 20 码力 | 113 页 | 1.22 MB | 1 年前3
State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020flatMap(new MatchFunction()); Java example 20 Vasiliki Kalavri | Boston University 2020 public static class EnrichmentFunction extends RichCoFlatMapFunction> the job is started or in the case of a failure. Vasiliki Kalavri | Boston University 2020 public static class CounterSource extends RichParallelSourceFunction implements ListCheckpointed { 0 码力 | 24 页 | 914.13 KB | 1 年前3
Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020high-rate append-only updates Data Warehouse • complex, offline analysis • large and relatively static and historical data • batched updates during downtimes, e.g. every night Streaming Data Warehouse pre-aggregated, pre-processed streams and historical data Data Management Approaches 4 storage analytics static data streaming data Vasiliki Kalavri | Boston University 2020 DBMS vs. DSMS DBMS DSMS Data persistent0 码力 | 45 页 | 1.22 MB | 1 年前3
Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020transactions, likes, comments • Analytics on user activity • Filtering, aggregation, joins with static data (e.g. user profile data) Examples • online A/B testing • trending topics • sentiment analysis0 码力 | 34 页 | 2.53 MB | 1 年前3
Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020easy to measure, estimates can be computed in a straight-forward manner. • Estimations based on static operator selectivities and heuristics are unsuitable for frequent load fluctuations. • Naive0 码力 | 43 页 | 2.42 MB | 1 年前3
监控Apache Flink应用程序(入门)by the metaspace, the size of which is unlimited by default and holds class metadata as well as static content. There is a JIRA Ticket6 to limit the size to 250 megabyte by default • The biggest driver0 码力 | 23 页 | 148.62 KB | 1 年前3
Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020of B < 0.5 Operator re-ordering B A A B ??? Vasiliki Kalavri | Boston University 2020 17 • A static graph transformation that enables re-ordering at runtime • It dynamically routes data after0 码力 | 54 页 | 2.83 MB | 1 年前3
共 11 条
- 1
- 2













