积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)Apache Flink(16)

语言

全部英语(15)中文(简体)(1)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.id= \ -Dyarn.ship-files=/path/to/shipfiles \ -pyarch shipfiles/venv.zip \ -pyclientexec /bin/flink run-application \ --target kubernetes-application \ --parallelism 8 \ -Dkubernetes.cluster-id= \ -Dtaskmanager.memory.process.size=4096m \ -Dkubernetes.taskmanager.cpu=2 \ -Dtaskmanager -Dkubernetes.cluster-id=my-first-flink-cluster Then you could submit PyFlink jobs to the session cluster as following: ./bin/flink run \ --target kubernetes-session \ -Dkubernetes.cluster-id=my-first-flink-cluster
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m \ -Dyarn.application.id= \ -Dyarn.ship-files=/path/to/shipfiles \ -pyarch shipfiles/venv.zip \ -pyclientexec /bin/flink run-application \ --target kubernetes-application \ --parallelism 8 \ -Dkubernetes.cluster-id= \ -Dtaskmanager.memory.process.size=4096m \ -Dkubernetes.taskmanager.cpu=2 \ -Dtaskmanager -Dkubernetes.cluster-id=my-first-flink-cluster Then you could submit PyFlink jobs to the session cluster as following: ./bin/flink run \ --target kubernetes-session \ -Dkubernetes.cluster-id=my-first-flink-cluster
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 DataStream API Basics Vasiliki Kalavri | Boston University 2020 case class Reading(id: String, time: Long, temp: Double)
 
 object MaxSensorReadings { def main(args: Array[String]) SensorSource)
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9.0)))
 .keyBy(_.id)
 .max("temp")
 maxTemp.print()
 env.execute("Compute max }
 } Example: Sensor Readings 7 Vasiliki Kalavri | Boston University 2020 case class Reading(id: String, time: Long, temp: Double)
 
 object MaxSensorReadings { def main(args: Array[String])
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    SensorSource) 
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9.0)))
 .keyBy(_.id) .timeWindow(Time.minutes(1)) .max("temp")
 } } 3 Example: keyBy(_.id) // group readings in 1s event-time windows .window(TumblingEventTimeWindows.of(Time.seconds(1))) .process(new TemperatureAverager) val avgTemp = sensorData .keyBy(_.id) // DataStream[SensorReading] = ... // event-time sliding windows assigner val slidingAvgTemp = sensorData .keyBy(_.id) // create 1h event-time windows every 15 minutes .window(SlidingEventTimeWindows.of(Time.hours(1)
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    component ID per vertex • initially equal to vertex ID • Iterative step: For each vertex • choose the min of neighbors’ component IDs and own component ID as the new ID • if the component ID changed if seen for the 1st time, create a component with ID the min of the vertex IDs • if in different components, merge them and update the component ID to the min of the component IDs • if only one of University 2020 Distributed Stream Connected Components 36 1. partition the edge stream, e.g. by source Id 2. maintain a disjoint set in each partition 3. periodically merge the partial disjoint sets into
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    Events rideId Long a unique id for each ride taxiId Long a unique id for each taxi driverId Long a unique id for each driver isStart Boolean Events rideId Long a unique id for each ride taxiId Long a unique id for each taxi driverId Long a unique id for each driver startTime DateTime
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Spark Streaming and Flink Amir H. Payberah payberah@kth.se 05/10/2018 The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Issues ▶ Continuous . TwitterUtils.createStream(ssc, None) KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions]) 15 / 79 Input Operations - Custom Sources (1/3) ▶ To create a custom source: in place, such as a MySQL table. 59 / 79 Structured Streaming Example (1/3) ▶ Assume we receive (id, time, action) events from a mobile app. ▶ We want to count how many actions of each type happened
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    // partition and key the stream on the sensor ID val keyedData: KeyedStream[Reading, String] = sensorData .keyBy(_.id) // apply a stateful FlatMapFunction on the keyed if (tempDiff > threshold) { // temperature changed by more than the threshold out.collect((reading.id, reading.temperature, tempDiff)) } // update lastTemp state this.lastTempState.update(reading.temperature) state in Flink 18 3. get state value 4. update state This is the state of the current key (sensor id) Vasiliki Kalavri | Boston University 2020 Use keyed state to store and access state in the context
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    window fires, post becomes inactive 41 Vasiliki Kalavri | Boston University 2020 case class Reading(id: String, time: Long, temp: Double)
 
 object MaxSensorReadings { def main(args: Array[String]) {
 addSource(new SensorSource)
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9.0)))
 .keyBy(_.id)
 .max("temp")
 maxTemp.print()
 env.execute("Compute max sensor
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    numeric ids, starting from 1. • e.g., if ε=0.2, w=5 (5 items per window) • wcur: the current window id • We keep a list D of element frequencies and their maximum associated error. • Once a window | Boston University 2020 Lossy counting algorithm D = {} // empty list wcur = 1 // first window id N = 0 // elements seen so far Insert step For each element x in wcur: if x ∈ D, increase its
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16IntroductiontoApacheandKafkaCS591K1DataStreamProcessingAnalyticsSpring2020WindowstriggersGraphstreamingalgorithmsStreaminginScalableSparkStatemanagementprocessingfundamentalsSkewmitigation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩