积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(12)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 监控Apache Flink应用程序(入门)

    NonHeap.C ommitted job-/ taskmana ger The amount of non-heap memory guaranteed to be available to the JVM (in bytes). Status.JVM.Memory.Heap.Used job-/ taskmana ger The amount of heap Memory.Heap.Comm itted job-/ taskmana ger The amount of heap memory guaranteed to be available to the JVM (in bytes). caolei – 监控Apache Flink应用程序(入门) 进度和吞吐量监控 – 18 Status.JVM.Memory starting point when you first think about how to successfully monitor your Flink application. I highly recommend to start monitoring your Flink application early on in the development phase. This way
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    event rate? • drop messages • buffer messages in a queue: what if the queue grows larger than available memory? 2 ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers • Producers event rate? • drop messages • buffer messages in a queue: what if the queue grows larger than available memory? • block the producer (back-pressure, flow control) 2 ??? Vasiliki Kalavri | Boston University their receivers and receivers regularly send notifications upstream containing their number of available credits. • One credit corresponds to some amount of buffer space so that a sender can know
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    of an application. • The JobManager cannot restart the application until enough slots become available. • Restart is automatic if there is a ResourceManager, e.g. in a YARN setup • A manual TaskManager restarts the application and resets the state of all its tasks to the last completed checkpoint. Highly available Flink setup ??? Vasiliki Kalavri | Boston University 2020 To avoid repeating failures, Flink
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Advantages of sampling ??? Vasiliki Kalavri | Boston University 2020 20 • It might be unsuitable for highly selective queries: • queries that depend only upon a few tuples from the dataset • Providing
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    (suppose miniconda), run: # Download and install miniconda, the latest miniconda installers are available in https: ˓→//repo.anaconda.com/miniconda/ # Suppose the name of the downloaded miniconda installer IDE. Set up Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available in your local environment. It’s suggested to use Python virtual environments to set up your local cluster. Set up Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available on the nodes of the standalone cluster. It’s sug- gested to use Python virtual environments to set
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    (suppose miniconda), run: # Download and install miniconda, the latest miniconda installers are available in https: ˓→//repo.anaconda.com/miniconda/ # Suppose the name of the downloaded miniconda installer IDE. Set up Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available in your local environment. It’s suggested to use Python virtual environments to set up your local cluster. Set up Python environment It requires Python 3.6 or above with PyFlink pre-installed to be available on the nodes of the standalone cluster. It’s sug- gested to use Python virtual environments to set
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g. Spark’s memory for processing. ▶ Three categories of streaming sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g. off explicitly by a call to the start() method. ▶ DStreams support many of the transformations available on normal Spark RDDs. 20 / 79 Transformations (2/4) ▶ map • Returns a new DStream by passing
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    required by a fused operator should remain available. • Ensure resource amounts: the total amount of resources required by the fused operator must be available on a single host. • Avoid infinite recursion: • The optimizer can interact with the scheduler and fuse operators according to the number of available cores / threads • Fused operators can share the address space but use separate threads of control
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    state to remote and persistent storage, e.g. a distributed filesystem or a database system • Available state backends in Flink: • In-memory • File system • RocksDB State backends 7 Vasiliki 2020 • RocksDB is a persistent key value store: data lives on disk, state can grow larger than available memory and will not be lost upon failure. • Keys and values are arbitrary byte arrays: serialization
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    database. A data stream is a data set that is produced incrementally over time, rather than being available in full before its processing begins. • Data streams are high-volume, real-time data that might Boston University 2020 Properties of data streams • They arrive continuously instead of being available a-priori. • They bear an arrival and/or a generation timestamp. • They are produced by external
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
监控ApacheFlink应用程序应用程序入门FlowcontrolandloadsheddingCS591K1DataStreamProcessingAnalyticsSpring2020FaulttolerancedemoreconfigurationFilteringsamplingstreamsPy1.15Documentation1.16ScalableSparkStreamingoptimizationsStatemanagementprocessingfundamentals
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩