积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(12)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Stream Processing - Spark Streaming and Flink Amir H. Payberah payberah@kth.se 05/10/2018 The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design stateful streams. val ssc = new StreamingContext(conf, Seconds(1)) ssc.checkpoint("path/to/persistent/storage") 45 / 79 Stateful Stream Operations ▶ Spark API proposes two functions for statful processing: since the last trigger will be written to the external storage. 2. Complete: the entire updated result table will be written to external storage. 3. Update: only the rows that were updated in the result
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Netbeans with appropriate plugins installed. • gsutil for accessing datasets in Google Cloud Storage. More details: vasia.github.io/dspa20/exercises.html 14 Vasiliki Kalavri | Boston University detection • call frequency • top-K cell towers used 25 Vasiliki Kalavri | Boston University 2020 Web activity analysis • Visualization and aggregation • impressions, clicks, transactions, likes, comments Continuously arriving, possibly unbounded data f read write Complete data accessible in persistent storage 30 Vasiliki Kalavri | Boston University 2020 Consider a set of 1000 sensors deployed in different
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Distributed architecture client Flink program JobManager web dashboard TaskManager TaskManager TaskManager 5 Vasiliki Kalavri | Boston University 2020 DataStream distributed and fault-tolerant publish-subscribe messaging system and serves as the ingestion, storage, and messaging layer for large production streaming pipelines. Kafka is commonly deployed on a
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    updates • pre-aggregated, pre-processed streams and historical data Data Management Approaches 4 storage analytics static data streaming data Vasiliki Kalavri | Boston University 2020 DBMS vs. DSMS the total packets exchanged between two IP addresses • the collection of IP addresses accessing a web server 12 With some practical value for use-cases with append-only data It preserves all history
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    JobGraph and all required metadata, such as the application’s JAR file, into a remote persistent storage system • Zookeeper also holds state handles and checkpoint locations 5 JobManager failures following steps: 1. It requests the storage locations from ZooKeeper to fetch the JobGraph, the JAR file, and the state handles of the last checkpoint from remote storage. 2. It requests processing slots
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Message queues • Asynchronous point-to-point communication • Lightweight buffer for temporary storage • Messages stored on the queue until they are processed and deleted • transactional, timing, and explicitly deleted while MBs delete messages once consumed. • Use a database for long-term data storage! • MBs assume a small working set. If consumers are slow, throughput might degrade. • DBs support
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    are responsible for: • local state management • checkpointing state to remote and persistent storage, e.g. a distributed filesystem or a database system • Available state backends in Flink: • In-memory backend to choose? 9 Vasiliki Kalavri | Boston University 2020 RocksDB 10 RocksDB is an LSM-tree storage engine with key/value interface, where keys and values are arbitrary byte streams. https://rocksdb
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    to address non-determinism • Each output is checkpointed together with its unique ID to stable storage before being delivered to the next stage • Retries simply replay the output that has been checkpointed false the record is not a duplicate • if it returns true, the worker sends a lookup to stable storage 20 Vasiliki Kalavri | Boston University 2020 21 http://streamingbook.net/fig/5-5 Bloom filter:
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    sources. • To ensure no data loss, a persistent input message queue, such as Kafka, and enough storage is required. 21 o1 src o2 back-pressure target: 40 rec/s 10 rec/s 100 rec/s ??? Vasiliki Kalavri
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    in-flight data to be completely processed 3. Copy the state of each task to a remote, persistent storage 4. Wait until all tasks have finished their copies 5. Resume processing and stream ingestion University 2020 32 Epoch-Based Stream Execution Logged Input Streams Committed Output Streams Stable Storage ⇧epi AB8nicbVA9T8MwEL2Ur1K+CowsFi0SU5V0AbYKFsYiEajURJHjOq1 incremental checkpoints: • take a local snapshot and use a background thread to copy the state to remote storage • compute state deltas to reduce data transfer ??? Vasiliki Kalavri | Boston University 2020
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkCourseintroductionCS591K1DataAnalyticsSpring2020IntroductiontoApacheKafkaprocessingfundamentalsFaulttolerancedemoreconfigurationingestionpubsubsystemsStatemanagementHighavailabilityrecoverysemanticsguaranteesFlowcontrolloadsheddingExactlyoncefaultin
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩