积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(11)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    results: a local or instance variable that is accessed by a task’s business logic Operator state is scoped to an operator task, i.e. records processed by the same parallel task have access to the same state It cannot be accessed by other parallel tasks of the same or different operators Keyed state is scoped to a key defined in the operator’s input records • Flink maintains one state instance per key value key to the operator task that maintains the state for this key • State access is automatically scoped to the key of the current record so that all records with the same key access the same state State
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    30 ??? Vasiliki Kalavri | Boston University 2020 Pause-and-restart state migration • State is scoped to a single task • Each stateful task is responsible for processing and state management 31 31 ??? Vasiliki Kalavri | Boston University 2020 Pause-and-restart state migration • State is scoped to a single task • Each stateful task is responsible for processing and state management 31 operators ??? Vasiliki Kalavri | Boston University 2020 Pause-and-restart state migration • State is scoped to a single task • Each stateful task is responsible for processing and state management 31
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    each RDD using a given function. ▶ reduceByKey • Returns a new DStream of (K, V) pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream each RDD using a given function. ▶ reduceByKey • Returns a new DStream of (K, V) pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream each RDD using a given function. ▶ reduceByKey • Returns a new DStream of (K, V) pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    us compute the statistical variance of this series? 3 • the sum of all the values • the sum of the squares of the values • the number of observations var = ∑ (xi − μ)2 N ??? Vasiliki Kalavri | us compute the statistical variance of this series? 3 • the sum of all the values • the sum of the squares of the values • the number of observations • μ = sum / count • var = (sum of squares / of this series? 3 • the sum of all the values • the sum of the squares of the values • the number of observations We can compute the three summary values in a single pass through the data. • μ =
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Int): Real { TABLE state(tsum Int, cnt Int); INITIALIZE: { INSERT INTO state VALUES(Next, 1); } ITERATE: { UPDATE state SET tsum=tsum+Next Int): Real { TABLE state(tsum Int, cnt Int); INITIALIZE: { INSERT INTO state VALUES(Next, 1); } ITERATE: { UPDATE state SET tsum=tsum+Next Int): Real { TABLE state(tsum Int, cnt Int); INITIALIZE: { INSERT INTO state VALUES(Next, 1); } ITERATE: { UPDATE state SET tsum=tsum+Next, cnt=cnt+1;
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    maintain a hash table The more different elements we encounter in the stream, the more different hash values we shall see. Convert the stream into a multi-set of uniformly distributed random numbers using equal to: ??? Vasiliki Kalavri | Boston University 2020 The hash function h hashes x to any of N values with probability 1/N. Out of all x we hash: • around 50% will have a binary representation that so on… 6 ??? Vasiliki Kalavri | Boston University 2020 The hash function h hashes x to any of N values with probability 1/N. Out of all x we hash: • around 50% will have a binary representation that
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    EmitIntermediate(u, "1"); reduce(String key, Iterator values): // key: a URL // values: a list of counts int result = 0; for each v in values: result += ParseInt(v); Emit(key, AsString(result));
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    preserved: values of the same key might be routed to different workers • Workers are responsible for roughly the same amount of keys • No routing table is required • Key semantics preserved: values of Addressing skew • To address skew, the system needs to track the frequencies of the partitioning key values. • We can then use a hybrid partitioning function that treats normal keys and popular keys differently
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . 31 1.3.6.1 Q1: ‘tuple’ object has no attribute ‘_values’ . . . . . . . . . . . . . . . . . . . . . 31 1.3.6.2 Q2: AttributeError: ‘int’ object has no attribute PyFlink in a clean environment. 1.3.6 Data type issues 1.3.6.1 Q1: ‘tuple’ object has no attribute ‘_values’ Caused by: java.util.concurrent.ExecutionException: java.lang.RuntimeException: Error␣ ˓→received page) ˓→impl_fast.RowCoderImpl.encode_to_streamAttributeError: 'tuple' object has no attribute '_values' This issue is usually caused by the reason that it returns an object other than Row type in a Python
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . 31 1.3.6.1 Q1: ‘tuple’ object has no attribute ‘_values’ . . . . . . . . . . . . . . . . . . . . . 31 1.3.6.2 Q2: AttributeError: ‘int’ object has no attribute PyFlink in a clean environment. 1.3.6 Data type issues 1.3.6.1 Q1: ‘tuple’ object has no attribute ‘_values’ Caused by: java.util.concurrent.ExecutionException: java.lang.RuntimeException: Error␣ ˓→received page) ˓→impl_fast.RowCoderImpl.encode_to_streamAttributeError: 'tuple' object has no attribute '_values' This issue is usually caused by the reason that it returns an object other than Row type in a Python
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
StatemanagementCS591K1DataStreamProcessingandAnalyticsSpring2020ElasticitystatemigrationPartScalableSparkStreamingFlinkFilteringsamplingstreamslanguagesoperatorsemanticsCardinalityfrequencyestimationoptimizationsSkewmitigationPy1.15Documentation1.16
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩