积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)Apache Flink(18)

语言

全部英语(16)中文(简体)(2)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its frequency in each RDD of pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its frequency in each RDD of pairs where the values for each key are aggregated using the given reduce function. ▶ countByValue • Returns a new DStream of (K, Long) pairs where the value of each key is its frequency in each RDD of
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    System • ad-hoc queries, data manipulation tasks • insertions, updates, deletions of single row or groups of rows Data Stream Management System • continuous queries • sequential data access, make to obtain r2, r3, ..., etc. • as a replacement sequence where some attribute A denotes a key and an arriving tuple t replaces any existing tuple with the same t(A) value to form a new relation else ins_u(P). Insert-Replace: If the stream has a key, the reconstitution function ins_r guarantees that only the most recent item with a given key is included: • ins_r([]) = Ø • ins_r(P:i) = insert(i
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    pyflink.table import DataTypes table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')], DataTypes.ROW([DataTypes.FIELD("id", DataTypes. ˓→TINYINT()), DataTypes.FIELD("data", DataTypes. ˓→STRING())])) StreamTableEnvironment.create(env) ds = env.from_collection([(1, 'Hi'), (2, 'Hello')], type_info=Types.ROW_NAMED( ["id", "data"], [Types.BYTE(), Types.STRING()])) table = t_env.from_data_stream(ds, Schema contents of the current Table to local client. [12]: list(table.execute().collect()) [12]: [<Row(1, 'Hi')>, <Row(2, 'Hello')>] [13]: table.execute().print() +----+----------------------+--------------------------------+
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    pyflink.table import DataTypes table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')], DataTypes.ROW([DataTypes.FIELD("id", DataTypes. ˓→TINYINT()), DataTypes.FIELD("data", DataTypes. ˓→STRING())])) StreamTableEnvironment.create(env) ds = env.from_collection([(1, 'Hi'), (2, 'Hello')], type_info=Types.ROW_NAMED( ["id", "data"], [Types.BYTE(), Types.STRING()])) table = t_env.from_data_stream(ds, Schema contents of the current Table to local client. [12]: list(table.execute().collect()) [12]: [<Row(1, 'Hi')>, <Row(2, 'Hello')>] [13]: table.execute().print() +----+----------------------+--------------------------------+
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    contains materialized load shedding plans ordered by how much load shedding they will cause. • Each row contains a plan with • expected cycle savings • locations for drop operations • drop amounts
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Keyed state is scoped to a key defined in the operator’s input records • Flink maintains one state instance per key value and partitions all records with the same key to the operator task that maintains maintains the state for this key • State access is automatically scoped to the key of the current record so that all records with the same key access the same state State management in Apache Flink Vasiliki Kalavri | Boston University 2020 RocksDB 10 RocksDB is an LSM-tree storage engine with key/value interface, where keys and values are arbitrary byte streams. https://rocksdb.org/ https://www
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 non-overlapping buckets of fixed size 12:10 12:00 12:20 fixed time interval key 3 key 2 key 1 Tumbling windows 8 Vasiliki Kalavri | Boston University 2020 val sensorData: DataStream[SensorReading] University 2020 overlapping buckets of fixed size fixed length slide 12:10 12:00 12:20 key 3 key 2 key 1 Sliding windows 10 Vasiliki Kalavri | Boston University 2020 val sensorData: DataStream[SensorReading] Boston University 2020 a period of activity followed by a period of inactivity session gap key 3 key 2 key 1 Session windows 12 Vasiliki Kalavri | Boston University 2020 // event-time session windows
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    location for each key in the checkpoint, so that tasks locate and read the matching keys only • Avoids reading irrelevant data • Requires a materialized index for all keys, i.e. a key-to-read-offset Reconfiguring keyed stateful operators requires preserving the key semantics: • Existing state for a particular key and all future events with this key must be routed to the same parallel instance • Some Some kind of hashing is typically used • Maintaining routing tables or an index for all key mappings is usually impractical • Skewed load is challenging to handle with hashing 24 ??? Vasiliki Kalavri
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Key partitioning 2 w2 w1 w3 round-robin hash-based • Items are perfectly balanced among workers • No routing table required • Key semantics are not preserved: same key might be routed to different workers • Workers are responsible for roughly the same amount of keys • No routing table is required • Key semantics preserved: values of the same key are partitioning key values. • We can then use a hybrid partitioning function that treats normal keys and popular keys differently. • Keeping exact counts is impractical for large key domains, e.g.
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    // access the state for this key MovingAverage average = averageState.value(); // create a new MovingAverage (with window size 2) if none exists for this key if (average == null) average element.getCreationTime(); } } Windows (Not the OS) Global Vs Keyed Windows stream. .keyBy(<key selector>) .window() .reduce|aggregate|process() stream. ◦EventTimeSessionWindows.withGap(Time.minutes(30)) DataStream input = ... input .keyBy(“key”) .window(TumblingEventTimeWindows.of(Time.minutes(1))) .process(new MyWastefulMax()); public
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
ScalableStreamProcessingSparkStreamingandFlinkprocessingfundamentalsCS591K1DataAnalyticsSpring2020Py1.15Documentation1.16FlowcontrolloadsheddingStatemanagementWindowstriggersFaulttolerancedemoreconfigurationSkewmitigationinApache
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩