积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)Apache Flink(19)

语言

全部英语(19)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    subscription. • DB query results depend on a snapshot and clients are not notified if their query result changes later. 13 Message delivery and ordering Acknowledgements are messages from the client • Data streaming from various processes or devices • a residential sensor can stream data to backend servers hosted in the cloud. 24 A publisher application creates a topic and sends messages
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    onPkoUvUQHeoiXxE0SN6Rq/ozZHOi/PufCxaC04+c4z+wPn8AedOjc= Local State Backend External State Backend ⇧ep2 AB8nicbVA9T8MwEHXKVylf triggers a checkpoint of its local state at the state backend, and broadcasts barriers to all outgoing stream partitions. • The state backend notifies the task once its state checkpoint is complete checkpointing and recovery mechanism only resets the internal state of a streaming application • Some result records might be emitted multiple times to downstream systems 50 ??? Vasiliki Kalavri | Boston
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    accesses and fault tolerance • Limited to TaskManager’s memory and might suffer from GC pauses Which backend to choose? 8 Vasiliki Kalavri | Boston University 2020 RocksDBStateBackend • Stores all state system and supports incremental checkpoints • Use for applications with very large state Which backend to choose? 9 Vasiliki Kalavri | Boston University 2020 RocksDB 10 RocksDB is an LSM-tree storage conf/flink.conf.yaml: # Supported backends are 'jobmanager', 'filesystem', ‘rocksdb' # # state.backend: rocksdb # # Directory for checkpoints filesystem # # state.checkpoints.dir: path/to/checkpoint/folder/
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the spanner? As an adjacency list? which state primitives are suitable? Is RocksDB a suitable backend for graph state? • How to compute the distance between edges? Do we need to do that for every
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    produce output What can go wrong: • lost events • duplicate or lost state updates • wrong result 5 mi mo Was mi fully processed? Was mo delivered downstream? Vasiliki Kalavri | Boston University University 2020 Processing guarantees and result semantics 11 sum 4 3 2 1 0 … Vasiliki Kalavri | Boston University 2020 Processing guarantees and result semantics 11 sum 4 3 2 1 … 1 5 Vasiliki University 2020 Processing guarantees and result semantics 11 sum 4 3 1 3 3 … 5 6 Vasiliki Kalavri | Boston University 2020 Processing guarantees and result semantics 11 sum 5 4 3 6 6 … 6 7 1
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    DStream of (word, 1). ▶ Get the frequency of words in each batch of data. ▶ Finally, print the result. val pairs = words.map(word => (word, 1)) val wordCounts = pairs.reduceByKey(_ + _) wordCounts trigger fires, Spark checks for new data (new row in the input table), and incrementally updates the result. 57 / 79 Programming Model (1/2) ▶ Two main steps to develop a Spark stuctured streaming: ▶ 1 trigger fires, Spark checks for new data (new row in the input table), and incrementally updates the result. 57 / 79 Programming Model (1/2) ▶ Two main steps to develop a Spark stuctured streaming: ▶ 1
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    word_count.py # You will see outputs as following: # Use --input to specify file input. # Printing result to stdout. Use --output to specify output path. # +I[To, 1] # +I[be,, 1] # +I[or, 1] # +I[not, 1] used in Table API & SQL [20]: from pyflink.table.udf import udf # create a general Python UDF @udf(result_type=DataTypes.BIGINT()) def plus_one(i): return i + 1 table.select(plus_one(col('id'))).to_pandas() pyflink-docs, Release release-1.15 [20]: _c0 0 2 1 3 [21]: # create a general Python UDF @udf(result_type=DataTypes.BIGINT(), func_type='pandas') def pandas_plus_one(series): return series + 1 table
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    word_count.py # You will see outputs as following: # Use --input to specify file input. # Printing result to stdout. Use --output to specify output path. # +I[To, 1] # +I[be,, 1] # +I[or, 1] # +I[not, 1] used in Table API & SQL [20]: from pyflink.table.udf import udf # create a general Python UDF @udf(result_type=DataTypes.BIGINT()) def plus_one(i): return i + 1 table.select(plus_one(col('id'))).to_pandas() pyflink-docs, Release release-1.16 [20]: _c0 0 2 1 3 [21]: # create a general Python UDF @udf(result_type=DataTypes.BIGINT(), func_type='pandas') def pandas_plus_one(series): return series + 1 table
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    conditions does the optimization preserve correctness? • maintain state semantics • maintain result and selectivity semantics • Dynamism: can the optimization be applied during runtime or does it attributes A writes to. • Commutativity: the results of applying A and then B must be the same as the result of applying B and then A. • holds if both operators are stateless Operator re-ordering B A A attributes A writes to. • commutativity: the results of applying A and then B must be the same as the result of applying B and then A. • holds if both operators are stateless Re-ordering split and merge
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • They maintain a single value as window state and eventually emit the aggregated value as the result. • ReduceFunction and AggregateFunction • Full window functions collect all elements of a window accumulator); // compute the result from the accumulator and return it. OUT getResult(ACC accumulator); // merge two accumulators and return the result. ACC merge(ACC a, ACC b); } 16 Input type Accumulator type Output type Initialization Accumulate one element Compute the result Merge two partial accumulators Vasiliki Kalavri | Boston University 2020 Use the ProcessWindowFunction
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
StreamingestionandpubsubsystemsCS591K1DataProcessingAnalyticsSpring2020ExactlyoncefaulttoleranceinApacheFlinkStatemanagementGraphstreamingalgorithmsHighavailabilityrecoverysemanticsguaranteesScalableSparkStreamingPy1.15Documentation1.16optimizationsWindowstriggers
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩