积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)Apache Flink(18)

语言

全部英语(17)中文(简体)(1)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    data access, high-rate append-only updates Data Warehouse • complex, offline analysis • large and relatively static and historical data • batched updates during downtimes, e.g. every night Boston University 2020 1. Process events online without storing them 2. Support a high-level language (e.g. StreamSQL) 3. Handle missing, out-of-order, delayed data 4. Guarantee deterministic (on analytics … Building a stream processor… 8 ? Vasiliki Kalavri | Boston University 2020 Basic Stream Models Vasiliki Kalavri | Boston University 2020 A stream can be viewed as a massive, dynamic, one-dimensional
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    type, content, timing constraints. • Actions define how to produce results from the matches. Language Types 3 Vasiliki Kalavri | Boston University 2020 Three classes of operators: • relation-to-relation: portions of a stream. • relation-to-stream: create streams through querying tables Declarative language: CQL 4 Vasiliki Kalavri | Boston University 2020 Select IStream(*) From S1 [Rows 5], S2 [Rows τ> whenever tuple s is in R at time τ. 6 Vasiliki Kalavri | Boston University 2020 Imperative language: Aurora SQuAl Queries are represented in graphical representation using boxes and arrows Tumble
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Queuing theory models: for latency objectives • Control theory models: e.g., PID controller • Rule-based models, e.g. if CPU utilization > 70% => scale out • Analytical dataflow-based models Action Predictive: at-once for all operators 8 ??? Vasiliki Kalavri | Boston University 2020 Queuing theory models 9 • Metrics • service time and waiting time per tuple and per task • total time spent processing predictive, at-once for all operators ??? Vasiliki Kalavri | Boston University 2020 Queuing theory models 9 • Metrics • service time and waiting time per tuple and per task • total time spent processing
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    maintains state: • rolling aggregations • window contents • input offsets • machine learning models State in dataflow computations 2 Vasiliki Kalavri | Boston University 2020 • No explicit state as regular objects on TaskManager’s heap • Low read/write latencies • OutOfMemoryError if large grows too large, GC pauses • Checkpoints sent to JobManager's heap memory, i.e. the state is lost in case to a remote file system and supports incremental checkpoints • Use for applications with very large state Which backend to choose? 9 Vasiliki Kalavri | Boston University 2020 RocksDB 10 RocksDB
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    during office hours. Vasiliki Kalavri | Boston University 2020 Dataset A subset of traces from a large (12.5k machines) Google cluster • https://github.com/google/cluster-data/blob/master/ ClusterData2011_2 challenging? 28 Vasiliki Kalavri | Boston University 2020 Using pseudocode (or the programming language of your choice), write a program that reads a stream of integers and computes: 29 1. the maximum
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    maintains state: • rolling aggregations • window contents • input offsets • machine learning models State in dataflow computations 3 Vasiliki Kalavri | Boston University 2020 Logic State maintains state: • rolling aggregations • window contents • input offsets • machine learning models State in dataflow computations 3 Vasiliki Kalavri | Boston University 2020 Logic State maintains state: • rolling aggregations • window contents • input offsets • machine learning models State in dataflow computations 3 Vasiliki Kalavri | Boston University 2020 4 Distributed streaming
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 A simple and efficient synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series Kalavri | Boston University 2020 A simple and efficient synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series Kalavri | Boston University 2020 A simple and efficient synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 14 Combining estimates • Average won’t work: The expected value of 2R is too large. • Median won’t work: it is always a power of 2, thus, if the correct estimate is between two University 2020 18 Detect DNS DDoS attacks • Flooding the resources of the targeted system by sending a large number of query from a botnet • Group queries by their top-level domain and investigate most popular functions increases the collision probability • Counter overestimation is almost certain for very large data streams with high-frequency elements Counting Bloom Filter ??? Vasiliki Kalavri | Boston
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    . . . . . . . . . . . . . . . . . . . . . . 30 1.3.5.1 Q1: OverflowError: timeout value is too large . . . . . . . . . . . . . . . . . . . . 30 1.3.5.2 Q2: An error occurred while calling z:org.apache you to build scalable batch and streaming workloads, such as real-time data processing pipelines, large-scale exploratory data analysis, Machine Learning (ML) pipelines and ETL processes. If you’re already java: ˓→147) ... 39 more 1.3.5 Runtime issues 1.3.5.1 Q1: OverflowError: timeout value is too large File "D:\Anaconda3\envs\py37\lib\threading.py", line 926, in _bootstrap_inner self.run() File
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    . . . . . . . . . . . . . . . . . . . . . . 30 1.3.5.1 Q1: OverflowError: timeout value is too large . . . . . . . . . . . . . . . . . . . . 30 1.3.5.2 Q2: An error occurred while calling z:org.apache you to build scalable batch and streaming workloads, such as real-time data processing pipelines, large-scale exploratory data analysis, Machine Learning (ML) pipelines and ETL processes. If you’re already java: ˓→147) ... 39 more 1.3.5 Runtime issues 1.3.5.1 Q1: OverflowError: timeout value is too large File "D:\Anaconda3\envs\py37\lib\threading.py", line 926, in _bootstrap_inner self.run() File
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
StreamprocessingfundamentalsCS591K1DataProcessingandAnalyticsSpring2020StreaminglanguagesoperatorsemanticsElasticitystatemigrationPartStatemanagementCourseintroductionHighavailabilityrecoveryguaranteesFilteringsamplingstreamsCardinalityfrequencyestimationPyFlink1.15Documentation1.16
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩