积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Apache Flink(9)

语言

全部英语(7)中文(简体)(2)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Alternatives • data structures • sorting vs hashing • indexing, pre-fetching • minimize disk access • scheduling Objectives • optimize resource utilization or minimize resources • decrease operators are stateless Operator re-ordering B A A B Move selective operators upstream to filter data early ??? Vasiliki Kalavri | Boston University 2020 16 Profitability • Selectivity of A = 0.5 • Profitable • theta-join operations are commutative • natural joins are associative • Move projections early to reduce data item size • Pick join orderings to minimize the size of intermediate results •
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Flink如何实时分析Iceberg数据湖的CDC数据

    ACCly DeleFiBA ACCly DeleFiBA 68Ek- 68Ek-3 68Ek-2 68Ek-4 K满足y确o要求J 2Kk现高吞e写入J 3K满足n发高t读aJ 4Kb以k现EA8CEhBF级别的增量ra J 方案p结 R点 K同一N68EkV的重hDeleFe -ileb以 缓存I加速 J3I2 t率J 2KlODeleFe-ile溢出到DiEk的情况I b考虑T助K7 -I1E5 DE1E6E -I1E5 D量FCI的Tr3ns3cAion提交 .3rAiAion-2 Ice4erg -eA3sAore .3rAiAion-1 .3rAiAion-3 f1 f2 f3 Ice4erg D3A3 )enAer ((2-1 -eA3sAore D3A3 )enAer ((2-2 f4 Ice4erg/Are3m1riAer Ice4erg/Are3m1riAer
    0 码力 | 36 页 | 781.69 KB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    successfully monitor your Flink application. I highly recommend to start monitoring your Flink application early on in the development phase. This way you will be able to improve your dashboards and alerts over questions about the runtime behaviour of your application, and learn much more about Flink’s internals early on. Last but not least, this post only scratches the surface of the overall metrics and monitoring
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Operator state is scoped to an operator task, i.e. records processed by the same parallel task have access to the same state • It cannot be accessed by other parallel tasks of the same or different operators that maintains the state for this key • State access is automatically scoped to the key of the current record so that all records with the same key access the same state State management in Apache Flink • Keys and values are arbitrary byte arrays: serialization and deserialization is required to access the state via a Flink program. • The keys are ordered according to a user-specified comparator
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    called with the key of the window, an Iterable to access the elements of the window, and a Collector to emit results. • A Context gives access to the metadata of the window (start and end timestamps custom logic for which predefined windows and transformations might not be suitable: • they provide access to record timestamps and watermarks • they can register timers that trigger at a specific time in the stream. Result records are emitted by passing them to the Collector. The Context object gives access to the timestamp and the key of the current record and to a TimerService. • onTimer(timestamp:
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    single row or groups of rows Data Stream Management System • continuous queries • sequential data access, high-rate append-only updates Data Warehouse • complex, offline analysis • large and relatively Kalavri | Boston University 2020 DBMS vs. DSMS DBMS DSMS Data persistent relations streams Data Access random sequential, single-pass Updates arbitrary append-only Update rates relatively low high,
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    @Override public Tuple2 map (Tuple2 item) throws Exception { // access the state for this key MovingAverage average = averageState.value(); // create a new MovingAverage
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    processor • The load shedder continuously monitors input rates or other system metrics and can access information about the running query plan • It detects overload and decides what actions to take
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    control command Helper operators, hidden from the application developer Helper operators have access to the downstream state Live state migration ??? Vasiliki Kalavri | Boston University 2020 36
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020Flink如何实时分析Iceberg数据CDC监控Apache应用程序应用程序入门StatemanagementWindowstriggersprocessingfundamentalsinFlowcontrolloadsheddingElasticitystatemigrationPart
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩