积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(24)Apache Flink(24)

语言

全部英语(21)中文(简体)(3)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 24 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is a data set that is produced incrementally over time, rather than being available DBMS SDW DSMS Database Management System • ad-hoc queries, data manipulation tasks • insertions, updates, deletions of single row or groups of rows Data Stream Management System • continuous Useful in theory for the development of streaming algorithms With limited practical value in distributed, real-world settings Vasiliki Kalavri | Boston University 2020 Cash-Register Model: In this
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Message queues and brokers Where do stream processors read data from? 2 Challenges • can be distributed • out-of-sync sources may produce out-of-order streams • can be connected to the network userSentPayment 4 Connecting producers to consumers • Indirectly • Producer writes to a file or database • Consumer periodically polls and retrieves new data • polling overhead, latency? • Consumer broker: a system that connects event producers with event consumers. • It receives messages from the producers and pushes them to the consumers. • A TCP connection is a simple messaging system which
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible the above example, the Python virtual environment is specified via option -pyarch. It will be distributed to the cluster nodes during job execution. It should be noted that option -pyexec is also required environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible the above example, the Python virtual environment is specified via option -pyarch. It will be distributed to the cluster nodes during job execution. It should be noted that option -pyexec is also required environment during submitting PyFlink jobs. In this way, the Python virtual environment will be distributed to the cluster nodes where PyFlink jobs are running on during job starting up. This is more flexible
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    types • The system is unaware of which parts of an operator constitute state Streaming state 3 • Explicit state primitives including state types and interfaces • The system is aware of state state to remote and persistent storage, e.g. a distributed filesystem or a database system • Available state backends in Flink: • In-memory • File system • RocksDB State backends 7 Vasiliki Kalavri purposes! FsStateBackend • Stores state on TaskManager’s heap but checkpoints it to a remote file system • In-memory speed for local accesses and fault tolerance • Limited to TaskManager’s memory and might
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    30 / 79 Output Operations (1/4) ▶ Push out DStream’s data to external systems, e.g., a database or a file system. ▶ foreachRDD: the most generic output operator • Applies a function to each RDD generated stream as a table that is being continuously appended. ▶ Built on the Spark SQL engine. ▶ Perform database-like query optimizations. 56 / 79 Programming Model (1/2) ▶ Two main steps to develop a Spark minutes", "5 minutes"), col("word")).count() 67 / 79 Flink 68 / 79 Flink ▶ Distributed data flow processing system ▶ Unified real-time stream and batch processing ▶ Process unbounded and bounded
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    ....................................................................................... 22 4.14 System Resources....................................................................................... queue, before it is processed by Apache Flink, which then writes the results to a database or calls a downstream system. In such a pipeline, latency can be introduced at each stage and for various reasons TaskManager (in case of a containerized setup), or by providing more TaskManagers. In general, a system already running under very high load during normal operations, will need much more time to catch-up
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Pipeline: A || B Task: B || C Data: A || A ??? Vasiliki Kalavri | Boston University 2020 8 Distributed execution in Flink ??? Vasiliki Kalavri | Boston University 2020 9 Identify the most efficient context of streaming? • queries run continuously • streams are unbounded • In traditional ad-hoc database queries, the query plan is generated on- the-fly. Different plans can be used for two consecutive • Muhammad Anis Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream processing engines. ICDE 2015. • Nikos R. Katsipoulakis et. al. A holistic view of stream
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Today’s topics • High-availability and fault-tolerance in distributed stream processing • Recovery semantics and guarantees • Exactly-once processing in Apache Beam learning models State in dataflow computations 3 Vasiliki Kalavri | Boston University 2020 4 Distributed streaming systems will fail • how can we guard state against failures and guarantee correct results fully processed? Was mo delivered downstream? Vasiliki Kalavri | Boston University 2020 A simple system model stream sources N1 NK N2 … input queue output queue primary nodes secondary nodes other
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Mechanism: How to apply the re-configuration? 3 • Detect environment changes: external workload and system performance • Identify bottleneck operators, straggler workers, skew • Enumerate scaling actions processing a tuple and all its derived results • Policy • each operator as a single-server queuing system • generalized Jackson networks • Action • predictive, at-once for all operators ??? Vasiliki processing a tuple and all its derived results • Policy • each operator as a single-server queuing system • generalized Jackson networks • Action • predictive, at-once for all operators Too fine-grained
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
StreamprocessingfundamentalsCS591K1DataProcessingandAnalyticsSpring2020ingestionpubsubsystemsPyFlink1.15Documentation1.16StatemanagementScalableSparkStreaming监控Apache应用程序应用程序入门optimizationsHighavailabilityrecoverysemanticsguaranteesElasticitystatemigrationPart
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩