积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Apache Flink(9)

语言

全部英语(9)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    state that reflect part of the stream history they have seen • windows, continuous aggregations, distinct… • State is commonly partitioned by key • State can be cleared based on watermarks or punctuations logical conjunction • if A is a projection on multiple attributes • if A is an idempotent aggregation Operator separation A A2 A1 Separate operators into smaller computational steps • beneficial Boston University 2020 24 • Cost of Merge = 0.5 • Cost of A = 0.5 • Splitting A allows a pre-aggregation similar to what combiners do in MapReduce Operator separation merge X merge A A X merge
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    measurements analysis • Monitoring applications • Complex filtering and alarm activation • Aggregation of multiple sensors and joins • Examples • Real-time statistics, e.g. weather maps • Monitor activity analysis • Visualization and aggregation • impressions, clicks, transactions, likes, comments • Analytics on user activity • Filtering, aggregation, joins with static data (e.g. user profile
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    given the constraint that system throughput matches the data input rate • In the case of known aggregation functions, results can be scaled using approximate query processing techniques, where accuracy a data stream manager. (VLDB ’03) • N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data streams. (VLDB’06) • N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit:
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    functions define the computation that is performed on the elements of a window • Incremental aggregation functions are applied when an element is added to a window: • They maintain a single value as
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    where("id > 10") // using untyped APIs ds.filter(_.id > 10).map(_.action) // using typed APIs // Aggregation df.groupBy("action") // using untyped API ds.groupByKey(_.action) // using typed API // SQL commands
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Counting distinct elements 2 ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages Naive solution: maintain Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages Naive solution: maintain
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ins(P:i) = insert(i, ins(P)), where P:i denotes the sequence P extended by item i. Insert-Unique (distinct): The reconstitution function ins_u checks for duplicates: • ins_u([]) = Ø • ins_u(P:i) = if i Vasiliki Kalavri | Boston University 2020 • The average of a stream on integers? • The number of distinct users who have visited a website? • The top-10 queries inserted in a search engine? • The connected universal synopsis solution • They are purpose-built and query-specific • different synopsis to count distinct elements than to keep track of top-K events 33 Vasiliki Kalavri | Boston University 2020 Dataflow
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Use keyed state to store and access state in the context of a key attribute: • For each distinct value of the key attribute, Flink maintains one state instance. • The keyed state instances of
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    difficult to find a good estimator for some queries: • How can we scale the answer for NOT IN, DISTINCT, anti-joins, outer-joins Drawbacks of sampling ??? Vasiliki Kalavri | Boston University 2020
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020CourseintroductionFlowcontrolloadsheddingWindowstriggersScalableSparkFlinkCardinalityfrequencyestimationprocessingfundamentalsStatemanagementFilteringsamplingstreams
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩