积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(11)中文(简体)(2)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is a data set that is produced incrementally over time, rather than being available not know when the stream ends. 3 Vasiliki Kalavri | Boston University 2020 DW DBMS SDW DSMS Database Management System • ad-hoc queries, data manipulation tasks • insertions, updates, deletions might be unknown. up-to-date frequencies for specific (source, destination) pairs observed in IP connections that are currently active 10 The vector is updated by a continuous stream events where the
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources: 1. Basic sources directly available in the StreamingContext API, e.g., file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided operations 30 / 79 Output Operations (1/4) ▶ Push out DStream’s data to external systems, e.g., a database or a file system. ▶ foreachRDD: the most generic output operator • Applies a function to each
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    context of streaming? • queries run continuously • streams are unbounded • In traditional ad-hoc database queries, the query plan is generated on- the-fly. Different plans can be used for two consecutive • If the sender and receiver run in separate processes, they communicate via permanent TCP connections. • If they run in the same process, the sender task serializes the outgoing records into a
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the slowest task. • Parallel tasks are connected via virtual channels multiplexed over TCP connections: • In the presence of skew, a single overload channel can cause the slowdown of the entire
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    userSentPayment 4 Connecting producers to consumers • Indirectly • Producer writes to a file or database • Consumer periodically polls and retrieves new data • polling overhead, latency? • Consumer Databases • DBs keep data until explicitly deleted while MBs delete messages once consumed. • Use a database for long-term data storage! • MBs assume a small working set. If consumers are slow, throughput multiple systems • a Google Compute Engine instance can write logs to the monitoring system, to a database for later querying, and so on. • Data streaming from various processes or devices • a residential
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    release unused resources, safely terminate processes • Adjust dataflow channels and network connections • Re-partition and migrate state in a consistent manner • Block and unblock computations to
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 ESL: Expressive Stream Language • Ad-hoc SQL queries • Updates on database tables • Continuous queries on data streams • New streams (derived) are defined as virtual views of the 10th international conference on Database Theory (ICDT’05). • Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Query languages and data models for database sequences and data streams. In Proceedings
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    management • checkpointing state to remote and persistent storage, e.g. a distributed filesystem or a database system • Available state backends in Flink: • In-memory • File system • RocksDB State backends
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    persistent message queue, before it is processed by Apache Flink, which then writes the results to a database or calls a downstream system. In such a pipeline, latency can be introduced at each stage and for
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
StreamprocessingfundamentalsCS591K1DataProcessingandAnalyticsSpring2020ScalableSparkStreamingFlinkoptimizationsFaulttolerancedemoreconfigurationFlowcontrolloadsheddingingestionpubsubsystemsElasticitystatemigrationPartlanguagesoperatorsemanticsStatemanagement监控Apache应用程序应用程序入门
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩