积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)Apache Flink(25)

语言

全部英语(22)中文(简体)(3)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/16: Skew mitigation ??? Vasiliki Kalavri | hitters 3 ??? Vasiliki Kalavri | Boston University 2020 Lossy Counting • Find all items x in a data stream such that: • freq(x) > δ*N, where N is the number of stream elements • The solution will randomized load balancing. IEEE TPDS 2001. • Manku, G.S., Motwani, R. Approximate frequency counts over data streams. VLDB 2002. Further reading
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/25: State Management Vasiliki Kalavri | Boston types can you think of? • Count, sum, list, map, … Vasiliki Kalavri | Boston University 2020 All data maintained by a task and used to compute results: a local or instance variable that is accessed by ache-flink Vasiliki Kalavri | Boston University 2020 • RocksDB is a persistent key value store: data lives on disk, state can grow larger than available memory and will not be lost upon failure.
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/14: Stream processing optimizations ??? Vasiliki Revisiting the basics 4 Dataflow graph • operators are nodes, data channels are edges • channels have FIFO semantics • streams of data elements flow continuously along edges Operators • receive University 2020 Types of Parallelism 7 B A C A B D A A B split Pipeline: A || B Task: B || C Data: A || A ??? Vasiliki Kalavri | Boston University 2020 8 Distributed execution in Flink ??? Vasiliki
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/11: Windows and Triggers Vasiliki Kalavri | Boston
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/21: Introduction Vasiliki Kalavri | Boston University architecture of modern distributed streaming 4 Fundamental for representing, summarizing, and analyzing data streams Systems Algorithms Architecture and design Scheduling and load management Scalability Learn from experts with decades of hands-on experience in building and using distributed systems and data management platforms • Have fun! 10 Vasiliki Kalavri | Boston University 2020 Important dates
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu CS 591 K1: Data Stream Processing and Analytics Spring 2020 2/06: Notions of time and progress Vasiliki Kalavri captures the progress of the stage itself • minimum of input watermarks and event-times of non-late data Watermark propagation 12 Vasiliki Kalavri | Boston University 2020 13 Event-time update Vasiliki
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/23: Stream Processing Fundamentals Vasiliki Kalavri What is a stream? • In traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is a data set that is produced incrementally time, rather than being available in full before its processing begins. • Data streams are high-volume, real-time data that might be unbounded • we cannot store the entire stream in an accessible
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/23: Cardinality and frequency estimation certain for very large data streams with high-frequency elements Counting Bloom Filter ??? Vasiliki Kalavri | Boston University 2020 20 • A space-efficient probabilistic data structure that can be be used to estimate frequencies and heavy hitters in data streams • It was introduced in 2003 by Cormode and Muthukrishnan • It uses a hash table of p arrays of m counters • Elements update different
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/28: Graph Streaming ??? Vasiliki Kalavri | Kalavri | Boston University 2020 Streaming Connected Components • State: a disjoint set (union-find) data structure for the components • it stores a set of elements partitioned in disjoint subsets • Single-pass 8 7 5 1 4 ??? Vasiliki Kalavri | Boston University 2020 59 • Similar challenges exist for a data-parallel implementation of spanners • How to represent the spanner? As an adjacency list? which
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/21: Sampling and filtering streams ??? Vasiliki 2020 Synopses for massive data streams • Maintaining synopses is often the only means of providing interactive response times when exploring massive datasets or high speed data streams. • Queries are ??? Vasiliki Kalavri | Boston University 2020 A simple and efficient synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
SkewmitigationCS591K1DataStreamProcessingandAnalyticsSpring2020StatemanagementStreamingoptimizationsWindowstriggersCourseintroductionNotionsoftimeprogressprocessingfundamentalsCardinalityfrequencyestimationGraphstreamingalgorithmsFilteringsamplingstreams
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩