积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)Apache Flink(16)

语言

全部英语(14)中文(简体)(2)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 • The JobManager is a single point of failure Flink applications • It keeps metadata about application execution, such as pointers to completed checkpoints. parallelism • scale out to process increased load • scale in to save resources • Fix bugs or change business logic • Optimize execution plan • Change operator placement • skew and straggler mitigation software version 9 Reconfiguration cases ??? Vasiliki Kalavri | Boston University 2020 Streaming applications are long-running • Workload will change • Conditions might change • State is accumulated
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    by a task and used to compute results: a local or instance variable that is accessed by a task’s business logic Operator state is scoped to an operator task, i.e. records processed by the same parallel • Checkpoints state to a remote file system and supports incremental checkpoints • Use for applications with very large state Which backend to choose? 9 Vasiliki Kalavri | Boston University 2020
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 B 21 Profitability • Running two applications together on a single core, one with operators B and C, the other with operators B and D. Redundancy elimination Multi-tenancy • in streaming systems that build one dataflow graph for several queries • when applications analyze data streams from a small set of sources • Operator elimination • remove a no-op, if the batched operator shares a lock with an upstream operator. • Satisfy deadlines: for applications with real-time constraints or QoS latency constraints. Batching Process multiple data elements
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    dianfu staff 295K 10 18 20:43 log4j-api-2.17.1.jar # -rw-r--r-- 1 dianfu staff 1.7M 10 18 20:43 log4j-core-2.17.1.jar # -rw-r--r-- 1 dianfu staff 24K 10 18 20:43 log4j-slf4j-impl-2.17.1.jar Please make sure [2]: Table Creation Table is a core component of the Python Table API. A Table object describes a pipeline of data transformations. It QuickStart: DataStream API Apache Flink offers a DataStream API for building robust, stateful streaming applications. It provides fine-grained control over state and timer, which allows for the implementation of
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    dianfu staff 295K 10 18 20:43 log4j-api-2.17.1.jar # -rw-r--r-- 1 dianfu staff 1.7M 10 18 20:43 log4j-core-2.17.1.jar # -rw-r--r-- 1 dianfu staff 24K 10 18 20:43 log4j-slf4j-impl-2.17.1.jar Please make sure [2]: Table Creation Table is a core component of the Python Table API. A Table object describes a pipeline of data transformations. It QuickStart: DataStream API Apache Flink offers a DataStream API for building robust, stateful streaming applications. It provides fine-grained control over state and timer, which allows for the implementation of
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    proficient in using Apache Flink and Kafka to build end-to-end, scalable, and reliable streaming applications • have a solid understanding of how stream processing systems work and what factors affect their of the challenges and trade-offs one needs to consider when designing and deploying streaming applications 6 Vasiliki Kalavri | Boston University 2020 Grading Scheme (1) • No Exam • 5 in-class quizzes virtual machine to run Flink in a UNIX environment. • A Java 8.x installation. To develop Flink applications and use its DataStream API in Java or Scala you will need a Java JDK. A Java JRE is not sufficient
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ 现在 Flink 1.9 的架构变化 Runtime Distributed Streaming Dataflow Query Processor DAG & StreamOperator offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ 未来 Micro Services O_0 O_1 I_0 I_1 I_2 P_0 P_1 P_2 S_0 S_1 Order Inventory Payment offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ ✔ 扫码加入社群 与志同道合的码友一起 Code Up 阿里云开发者社区 Apache Flink China 2群 粘贴二维码 谢谢!
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Complex Event Processing (CEP) systems 22 Google Cloud Pub/Sub Publishers and Subscribers are applications. 23 Use-cases • Balancing workloads in network clusters • tasks can be efficiently distributed lecture was assembled from the following sources: • Martin Kleppmann. Designing data-intensive applications (O’Reilly Media) • Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 What is a stream? • In traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is Summary Today you learned: • stream representations, stream processing models • streaming applications and use-cases • different approaches to data management • the relational streaming model vs
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    – 监控Apache Flink应用程序(入门) – 4 原文地址:https://www.ververica.com/blog/monitoring-apache-flink-applications-101 这篇博文介绍了Apache Flink内置的监控和度量系统,通过该系统,开发人员可以有效地监控他们的Flink作 业。通常,对于一个刚刚开始使用Apache Flink进行流处 NonHeap, Direct & Mapped memory for JobManagers and TaskManagers. • Heap memory - as with most JVM applications - is the most volatile and important metric to watch. This is especially true when using Flink’s
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
FaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020StatemanagementStreamingoptimizationsPyFlink1.15Documentation1.16CourseintroductionApache过去现在未来ingestionpubsubsystemsprocessingfundamentals监控应用程序应用程序入门
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩