积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(12)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/09: Flow control and load shedding ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers what if the queue grows larger than available memory? • block the producer (back-pressure, flow control) 2 ??? Vasiliki Kalavri | Boston University 2020 Load management approaches 3 ! Load shedder runtime and selectively drops tuples according to a QoS specification. • Similar to congestion control or video streaming in a lower quality. 4 ??? Vasiliki Kalavri | Boston University 2020 https://commons
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    time rate increase : input rate : throughput ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? Mechanism: How to apply the re-configuration? 3 • Detect environment to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Automatic Scaling Control 4 ??? Vasiliki Kalavri | Boston University 2020 The automatic scaling problem 5 Given a logical congestion, back pressure, throughput Policy • Queuing theory models: for latency objectives • Control theory models: e.g., PID controller • Rule-based models, e.g. if CPU utilization > 70% => scale
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Alternatives • data structures • sorting vs hashing • indexing, pre-fetching • minimize disk access • scheduling Objectives • optimize resource utilization or minimize resources • decrease example: URL access frequency (k2, list(v2)) → list(v2) (k1, v1) → list(k2, v2) map() reduce() 25 ??? Vasiliki Kalavri | Boston University 2020 MapReduce combiners example: URL access frequency google.com, 1 ??? Vasiliki Kalavri | Boston University 2020 MapReduce combiners example: URL access frequency 27 map() reduce() GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    @Override public Tuple2 map (Tuple2 item) throws Exception { // access the state for this key MovingAverage average = averageState.value(); // create a new MovingAverage DataStream control = env.fromElements("DROP", "IGNORE").keyBy(x -> x); DataStream streamOfWords = env.fromElements("data", "DROP", "artisans", "IGNORE") .keyBy(x -> x); control ValueStateDescriptor<>("blocked", Boolean.class)); } @Override public void flatMap1(String control_value, Collector out) throws Exception { blocked.update(Boolean.TRUE); } @Override
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    arrival and/or a generation timestamp. • They are produced by external sources, i.e. the DSMS has no control over their arrival order or the data rate. • They have unknown, possibly unbounded length, i single row or groups of rows Data Stream Management System • continuous queries • sequential data access, high-rate append-only updates Data Warehouse • complex, offline analysis • large and relatively Kalavri | Boston University 2020 DBMS vs. DSMS DBMS DSMS Data persistent relations streams Data Access random sequential, single-pass Updates arbitrary append-only Update rates relatively low high,
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the automatically converts this batch-like query to a streaming execution plan. ▶ 2. Specify triggers to control when to update the results. • Each time a trigger fires, Spark checks for new data (new row in the
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Operator state is scoped to an operator task, i.e. records processed by the same parallel task have access to the same state • It cannot be accessed by other parallel tasks of the same or different operators that maintains the state for this key • State access is automatically scoped to the key of the current record so that all records with the same key access the same state State management in Apache Flink • Keys and values are arbitrary byte arrays: serialization and deserialization is required to access the state via a Flink program. • The keys are ordered according to a user-specified comparator
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    unblock computations to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? 12 • Detect environment changes: external workload and system performance unblock computations to ensure result correctness ??? Vasiliki Kalavri | Boston University 2020 Control: When and how much to adapt? Mechanism: How to apply the re-configuration? 12 • Detect environment
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    called with the key of the window, an Iterable to access the elements of the window, and a Collector to emit results. • A Context gives access to the metadata of the window (start and end timestamps custom logic for which predefined windows and transformations might not be suitable: • they provide access to record timestamps and watermarks • they can register timers that trigger at a specific time in the stream. Result records are emitted by passing them to the Collector. The Context object gives access to the timestamp and the key of the current record and to a TimerService. • onTimer(timestamp:
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    Services O_0 O_1 I_0 I_1 I_2 P_0 P_1 P_2 S_0 S_1 Order Inventory Payment Shipping Flow-Control Async Call Auto Scale State Management Event Driven Flink 的未来 offline Real-time Batch Processing
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
FlowcontrolandloadsheddingCS591K1DataStreamProcessingAnalyticsSpring2020ElasticitystatemigrationPartStreamingoptimizationsinApacheFlinkprocessingfundamentalsScalableSparkStatemanagementFaulttolerancedemoreconfigurationWindowstriggers过去现在未来
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩