Apache Kyuubi 1.7.1-rc0 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 401 页 | 5.25 MB | 1 年前3
Apache Kyuubi 1.7.0-rc0 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 404 页 | 5.25 MB | 1 年前3
Apache Kyuubi 1.7.0 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 400 页 | 5.25 MB | 1 年前3
Apache Kyuubi 1.7.0-rc1 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 400 页 | 5.25 MB | 1 年前3
Apache Kyuubi 1.7.2-rc0 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 405 页 | 5.26 MB | 1 年前3
Apache Kyuubi 1.7.2 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 405 页 | 5.26 MB | 1 年前3
Apache Kyuubi 1.9.0-SNAPSHOT DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 405 页 | 4.96 MB | 1 年前3
Apache Kyuubi 1.7.3 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 405 页 | 5.26 MB | 1 年前3
Apache Kyuubi 1.8.0-rc0 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. pip install 'pyhive[hive]' from pyhive import hive cursor = hive.connect(host=kyuubi_host,port=10009).cursor() cursor.execute('SELECT * FROM my_awesome_data my_awesome_data LIMIT 10') print(cursor.fetchone()) print(cursor.fetchall()) from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to0 码力 | 428 页 | 5.28 MB | 1 年前3
Apache Kyuubi 1.7.3-rc0 DocumentationPyHive with Pandas PyHive provides a handy way to establish a SQLAlchemy compatible connection and works with Pandas dataframe for executing SQL and reading data via pandas.read_sql [https://pandas.pydata pydata.org/docs/reference/api/pandas.read_sql.html]. from pyhive import hive import pandas as pd # open connection conn = hive.Connection(host=kyuubi_host,port=10009) # query the table to a new dataframe above. Install PySpark with Spark SQL and optional pandas support on Spark using PyPI as follows: pip install pyspark 'pyspark[sql]' 'pyspark[pandas_on_spark]' For installation using Conda or manually0 码力 | 405 页 | 5.26 MB | 1 年前3
共 28 条
- 1
- 2
- 3













