基于 Greenplum 打造SaaS化电商服务平台基于GP打造SaaS化电商服务平台 聚水潭 秃鹰 赵坚密 2019.08.10 聚水潭成立于2014年1月,创始人兼CEO骆海东拥有超过二十年传统 及电商ERP的研发和实施部署经验,公司核心管理团队来自于阿里巴 巴、亚马逊、中国平安和麦包包等知名公司。 聚水潭创建之初,以电商SaaS ERP切入市场,凭借出色的产品和服务, 快速获得市场领先地位。随着客户需求的不断变化,如今聚水潭已经 发展成为以SaaS 发展成为以SaaS ERP为核心,集多种商家服务为一体的SaaS协同平台, 为全国近20万家电商企业提供全面的信息化解决方案。 经过5年多的发展,公司员工从2014年成立之初的9人增加到现在 1200多人。聚水潭已在全国设立了40多个线下服务分支机构,服务范 围覆盖超过268个城市,为客户提供及时、周到和专业的服务。 来自阿里巴巴旗下商家服务市场的最新数据显示,聚水潭已是企业 ERP类目中使用商家0 码力 | 7 页 | 547.94 KB | 1 年前3
Greenplum数据仓库UDW - UCloud中立云计算服务商接⼊ SuperSet UDW 使⽤案例 使⽤案例 案例⼀ 利⽤ logstash+Kafka+UDW 对⽇志数据分析 案例⼆ 基于UDW实现⽹络流分析 PXF 扩展 扩展 配置 PXF 服务 创建 EXTENSION 读写 HDFS ⽬录 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 4/206 194 196 198 B级数据仓库服务。UDW可以通过SQL让数据分析更简 单、⾼效,为互联⽹、物联⽹、⾦融、电信等⾏业提供丰富的业务分析能⼒。⽀持MADlib扩展,客⼾可以在udw上使⽤MADlib的扩展功能,从⽽让机器学习变得简单,⽀持PostGIS,可以⽅便 的⽀持空间、地理位置应⽤。最新⽀持greeplum6.2.1版本。 云数据仓库产品架构 云数据仓库产品架构 云数据库仓库 UDW 服务的架构图如下所⽰: 28核 168G 3800G(SSD) 选择数据仓库类型:Greenplum 是 EMC 开源的数据仓库产品、Udpg 是基于 PostgreSQL 开发的⼤规模并⾏、完全托管的 PB 级数据仓库服务。 选择节点个数:UDW 是分布式架构、所有节点数据都是双机热备,实际可⽤总容量略⼩于节点个数*节点磁盘⼤⼩/2,请根据实际数据⼤⼩选择合适的节点。 3.设置数据仓库信息 必选项有数据仓库名称0 码力 | 206 页 | 5.35 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台非常复杂的查询,以及为符合 ANSI 标准的 SQL 提供强有力的分析改进。通过自动对数据进行分区和并行运行查询,它让 服务器群集能够以单一数据超级计算机的方式运行,且性能比传统数据库或其他同类平台高出数十甚至数百倍。其多种分 析扩展功能支持 ANSI SQL,并通过封装扩展提供多种内置语言和附加功能。Greenplum 能够管理各种规模的数据卷,数 据量从数 GB 到数 PB 不等。 pivotal.io/cn 的后续发展,Pivotal 于 2015 年决定将其产品 Greenplum Database 开源。由此产生的最积极结果是 Greenplum Database 社区规模迅速扩大。该社区的成员为核心组件的开发贡献了力量,并且已经受益于 Pivotal 长久以来 在市场上取得的成功。从 2017 年初开始,他们每个月发布一次 Greenplum 更新,使其保有快速而可靠的创新力。 此次推 出的 Greenplum 供应商制约。用户可通过不同供应商获得针对 Greenplum 的服务和支持。 • Greenplum Database 在开发时采用的是以社区 / 客户为焦点的开发模式。客户可通过多种开放可用的方法对总 体产品方向产生影响,而这又会加快产品创新。 客户能够在群集中的一组初始服务器上部署 Pivotal Greenplum,并能在数据存储和用户需求增加时扩充配置中的服务器数 量,且无需卸载再重新加载数据。随着越来0 码力 | 9 页 | 690.33 KB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多 样性计算,致力于提供安全、稳定、易用的操作系统。 Greenplum 与欧拉开源社区强强联手,不仅是双方业务用户所期盼的,同时也是 Greenplum 白皮书 5 白皮书 | 5 欧拉开源操作系统 欧拉开源操作系统(openEuler, 简称“欧拉”)从服务器操作系统正式升级为面向数字基础设施的操作系统,支持服务 器、云计算、边缘计算、嵌入式等应用场景,支持多样性计算,致力于提供安全、稳定、易用的操作系统。通过为应用 提供确定性保障能力,支持 OT 领域应用及 OT 与 ICT 多处理器架构,未来还会扩展 PowerPC、SW64 等更多芯片架构支持,持续 完善多样化算力生态体验。 openEuler 社区面向场景化的 SIG 不断组建,推动 openEuler 应用边界从最初的服务器场景,逐步拓展到云计算、边 缘计算、嵌入式等更多场景。openEuler 正成为覆盖全场景的操作系统,将发布面向边缘计算的版本 openEuler 21.09 Edge、面向嵌入式的版本 openEuler0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1余年,10 余年来,专注在 Greenplum 和相关技术领域,主要工作职责是 售后支持,帮助我们的 Greenplum 用户解决生产需求和技术问题,我们坚持提供最专 业的建议和解决方案,提供最专业的技术支持服务,提供最专业的落地实施支持。 十多年来,参与过的项目不计其数,有 POC 测试,有开发支持,有故障支持,有 长期驻场支持,有临时的功能支持,甚至可能会作为用户看不见的后端支持,总之,我 们的 ...................................................................................... - 36 - 客户端/服务端间的加密连接 ......................................................................................... - .............................................................................. - 46 - 资源组基于角色或基于外部组件 ............................................................................ - 47 - 资源组的属性 ......0 码力 | 416 页 | 6.08 MB | 1 年前3
深度揭秘Greenplum开源数据库透明加密什么是Greenplum数据库 一款开源的HTAP数据库: • MPP架构 • 完整的事务+ACID+标准SQL支持 • 支持上千个节点的部署 • 支持PB级文件 • 丰富的ETL和外部组件 • 支持Python/R/Java直接访问处理数据库数据 • https://github.com/greenplum-db/gpdb GPDB GPDB的数据安全 用户 • 连接数据库 可以访问数据库二进制文件 • 可以访问数据库数据文件 • 可以访问预写日志文件 潜在风险(二) GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 运维模式 • 原厂服务,主机厂或者第三方运维 数据文件为明文二进制文件 • 直接通过Linux自带工具(strings, hexdump)访问 • pg_waldump可以直接读取并显示预写日志 潜在风险(三) • 知识产权保护 • 审计要求 用户数据存在直接暴露的风险 • 非部门员工运维(原厂,主机厂或者合作伙伴) • 事后审计难度很大 • 服务器数据被盗(托管或云部署) 用户的问题 现有解决方案 基于操作的系统的硬盘加密 • 只能防范服务器硬盘被盗 • 对运维安全无能为力 基于pgcypto的加密 • 可以满足数据安全要求 • 非原生方案 • 问题很多 基于pgcypto的数据加密方案0 码力 | 48 页 | 10.19 MB | 1 年前3
Greenplum 精粹文集16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 ql,而不是mysql等等), 但是 Postgresql 是单实例数据库,怎么能在多个 X86 服务器上运行多 个实例且实现并行计算呢?为了这,Interconnnect 大神器出现了。在 那一年多的时间里,大咖们很大一部分精力都在不断的设计、优化、 开发 Interconnect 这个核心软件组件。最终实现了对同一个集群中多 个 Postgresql 实例的高效协同和并行计算,Interconnect 为什么不从数据库底层进行重新设计研发? 所谓术业有专攻,就像制造跑车的不会亲自生产车轮一样,我们只 要专注在分布式技术中最核心的并行处理技术上面,协调我们下面 的轮子跑的更快更稳才是我们的最终目标。而数据库底层组件就像 车轮一样,经过几十年磨砺,数据库引擎技术已经非常成熟,大可 不必去重新设计开发,而且把数据库底层交给其它专业化组织来开 发(对应到 Postgresql 就是社区),还可充分利用到社区的源源不0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum on Kubernetes
容器化MPP数据库Kubernetes 容器网络管理 容器资源管理 容器镜像管理 容器调度 容器监控及自 定义操作 容器存储管理 Kubernetes 101 Kubernetes 101 Master组件 Node组件 Kubernetes存储资源 PV ● PersistentVolume ○ 表示一种存储资源,独立容器生命周期 ○ AWSElasticBlockStore, AzureDisk, Greenplum on Kubernetes ● 存储计算分离 ○ PV持久化存储资源 ○ StatefulSet/Pod弹性扩展计算资源 ● 数据库服务层 ○ Service统一Master & Standby Master地址 ● 服务发现机制 ○ 所有节点地址名不变 ● 跨云能力 ○ 容器应用对基础设施透明 Greenplum Operator Kubernetes Operator0 码力 | 33 页 | 1.93 MB | 1 年前3
Pivotal HVR meetup 20190816Storage/Big Query 13 Compare Products 天天拍车是国内领先的二手车竞拍平台,现有核心业务是二手车线上 竞拍。同时,天天拍车还提供上门检测、线上竞拍、包办手续等一站 式二手车交易服务。 天天拍车运用互联网技术,从根本上解决了二手车跨各区域成交和流 通效率低下等问题,持续推进行业升级变革。全国二手车经销商传统 的线下收车方式正在被快速颠覆——二手车经销商通过天天拍车的在 线竞拍系 和运营效率得以提升,这有助于二手车经销商专注于车辆整备和二手 车零售,加速行业专业化分工、实现规模化发展。 同时,天天拍车也正在布局二手车金融、二手车保卖等创新业务。截 至目前,天天拍车已在全国超过50个多城市设立线下交易服务中心。 参考:https://mp.weixin.qq.com/s/zgCfcbMKOJRYROdxjW6RNA 14 Compare Products 需求:利用GP自建数据仓库面临的数据集成问题 ➢ 对于增量备份可以支持准实时的同步也可以支持延时同步 ➢ 同步软件不会对源库造成负载上升的问题 ➢ 同步中断后能够记录中断点,在下次同步时可以自动从中断点开始继续同步数据 ➢ 能够提供对同步组件的监控 ➢ 操作简单,运维效率高 参考:https://mp.weixin.qq.com/s/zgCfcbMKOJRYROdxjW6RNA 15 Compare Products 参考:https://mp0 码力 | 31 页 | 2.19 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享Confidential–Inter nal Use Only 日程 Greenplum 数据库(GPDB)简介 Greenplum 数据库(GPDB)架构 Greenplum 数据库(GPDB)组件 Greenplum 数据库(GPDB)执行流程 Greenplum 数据库(GPDB)5.x 3 Pivotal Confidential–Inter nal Use Only 3 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 索引(B树,位图,GiST) 安全性 语言支持 Pivotal Confidential–Inter nal Use Only 15 © Copyright 2013 Pivotal. All rights reserved. Greenplum 组件 16 Pivotal Confidential–Inter nal Use Only 解析器 主节点Segment 系统表 优化器 分布式事务 调度器 执行器 解析器执行词法分 析、语法分析并生0 码力 | 44 页 | 8.35 MB | 1 年前3
共 20 条
- 1
- 2













