并行不悖- OLAP 在互联网公司的实践与思考数据流转过程 • 1 业务数据的产生 —— OLTP • 2 业务数据的中转 —— ETL服务器 • 3 数据的存储和计算 —— OLAP集群 • 4 结果数据的展现 —— 数据集市 • 5 访问接口的封装 —— API接口服务器 • 6 最终数据的显示 —— 前端界面 • 7 结果数据的交互 —— OLTP,趋势分析 • 8 OLAP数据流转 —— dbsync平台 7 数据仓库体系架构 数据架构示意图 Ø 12台虚拟机,39台物理机 17 Greenplum现状说明 三大Greenplum集群定位分类 • 公司IDC_01机房Greenplum体系 Ø 公司第一套Greenplum集群,网络环境为千兆网 Ø 数据来源为OLTP库,针对小数据量传输和计算,部分实时交互操作 Ø 以对账业务为主,统计计算为辅 • 公司IDC_02机房Greenplum体系 Ø 针对数据来源主要是kfk产生csv文件的业务,不直接从数据库传数 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系 环境创建与部署 • 部署注意点 Ø 资源要充足(ETL,管理节点,数据节点,数据集市) Ø 万兆网络 (网络环境对功能和性能的影响) Ø 节点规划 (数据节点6-10个segment节点) Ø 参数调整 (操作系统参数,greenplum集群参数) 24 Greenplum运维体系 系统状态监控0 码力 | 43 页 | 9.66 MB | 1 年前3
Greenplum 精粹文集由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 Python、C、Perl、TCL、 PLSQL 等等语言来扩展功能,在后续章节中,我将展现这种扩展 是如何的方便,另外,开发新的功能模块、新的数据类型、新的索 引类型等等非常方便,只要按照 API 接口开发,无需对 PG 重新编译。 PG 中 contrib 目录下的各个第三方模块,在 GP 中的 postgis 空间 数据库、R、Madlib、pgcrypto 各类加密算法、gptext 全文检索都 Shuffle 对比 MPP 计算中的重分布 -- 由于 Hadoop 数据 与节点的无关性,Shuffle 是基本避免不了的;而 MPP 数据库对于 相同 Hash 分布数据不需要重分布,节省大量网络和 CPU 消耗。 Mapreduce 没有统计信息,不能做基于 cost-base 的优化;MPP 数据库可以利用统计信息很好地进行并行计算优化。例如,MPP 对 于不同分布的数据可以在计算中基于0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1........................................................................................ - 14 - 内联网络:Interconnect ..................................................................................... .......................................................................................... - 17 - 网络层冗余 ............................................................................................... ................................................................................... - 41 - DB 应用程序接口 ..................................................................................................0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum on Kubernetes
容器化MPP数据库临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● 原有数据库架构升级 ○ Vertica Eon Mode ● 容器化数据库+Kubernetes ○ Apache Spark ○ CockroachDB ○ Apache HAWQ 云数据库存储方案 ● 块存储 ○ 文件系统接口 ● 对象存储 Segment Instance Segment Instance query Load Master节点和Standby Master节点 Greenplum 架构 Interconnect高速网络 Segment主机部署多个Segment实例 (Primary Segment和Mirror Segment) Greenplum 部署方案 ● Master节点和Standby Master分机部署 ? + = 容器化Greenplum ● 容器粒度 ○ Segment主机 VS. Segment实例 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary Segment部署策略 ○ Mirror Segment部署策略 ● 容器化Greenplum运维管理0 码力 | 33 页 | 1.93 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum................................................................................ 12 集成分析:改进后的全新分析接口 .................................................................................................. 利用容器实现安全分析 PL/Container 扩展是一个接口,允许 Greenplum 数据库与 Docker 容器交互,以在容器中执行用户定义函数 (UDF),这样方便数据科学家可以在不需要 DBA 帮助的情况自由使用数据分析,同时大大提高了安全性,Docker 容器确保用户代码无法访问源主机的文件系统。此外,容器启动时网络访问受限,无法连接回 Greenplum 数据库或 打开任何其他外部连接。 打开任何其他外部连接。 集成分析:改进后的全新分析接口 一直以来,客户都能在 Greenplum 中做高级分析,无论是提供将应用逻辑向下推送至数据所在位置的方法,执行分 析功能,还是以大规模并行方式构建数据模型,都可以实现。Greenplum 支持适用于数据挖掘和数据科学工作的最 全面、最先进的分析程序包和扩展。Greenplum 还针对最受欢迎的 Python 和 R 语言算法库提供简单易用的安装程0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案2000 2005 2010 新一代数据库的要求 传统数据库的要求 今天的数据库供应商 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum • “黑盒子” • 高度灵活性 • 逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 可以通过任何语言(SQL、M/R等)进行分析 14 强大并且不断扩展的合作伙伴网络 硬件供应商 商务智能工具 15 服务供应商 业内支持和认可 行业奖励 “ Greenplum能够让企业在两 个方面同时达到最满意的效果: 供程序员使用的MapReduce以 及供数据库管理使用的 据进行并行分析 19 通过经济的方案扩展 到千万亿字节规模 • 不用担心数据增长或 者开始的规模太小 • 在商用硬件上通过线 性、经济的方式扩展 Greenplum数据引擎体系 主机 网络互连 并行查询规划和调度 区段服务器 (处理和存储) SQL 查询和 MapReduce程序 MPP (海量并行处理) “完全不共享”体系 Greenplum体系:并行数据流 21 •0 码力 | 45 页 | 2.07 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台.................................................................................. 4 集成分析:改进后的全新分析接口 .................................................................................................. Spring Cloud Data Flow ETL 本地存储 HDFSS 云对象 存储 GemFire Spark 其他 RDBMSes 多结构数据 PIVOTAL GREENPLUM 平台 原生接口 分析应用 用户 JDBC、OBBC Teradata SQL Apache MADlib Python. R、 Java、Perl、C Apache SOLR PostGIS ANSI SQL 白皮书 6 © Copyright 2017 Pivotal Software, Inc.保留所有权利。 PIVOTAL GREENPLUM 5:新一代数据平台 集成分析:改进后的全新分析接口 一直以来,客户都能在 Pivotal Greenplum 中做高级分析,无论是提供将应用逻辑向下推送至数据所在位置的方法,执行 分析功能,还是以大规模并行方式构建数据模型,都可以实现。Greenplum0 码力 | 9 页 | 690.33 KB | 1 年前3
Pivotal Greenplum 最佳实践分享all_hosts--通过SC[同时拷贝文件到多个节点 – Ex: gpscp -f host_file installer.tar =:/ gpcheckperf--检查网络和硬盘性能(/etc/ssh/sshd_config#MaxStartups 10:30:100) – 检查Disk性能: gpcheckperf -f hosts-setup -d /data1 /data1 -d /data2 -r d -D -V –S 10GB gpcheckperf -f hosts-setup -d /data1 -d /data2 -r d -D -V – 检查网络性能: gpcheckperf -d /tmp -r N -f hosts-net0 gpcheckperf -d /tmp –r M -f hosts-net0 检查硬件和OS状态 – 查看command Centre中系统监控情況 – MegaCli检查磁片和Raid卡状态 – 检查OS是否有硬件错误告警 – gpcheckperf检查网络和磁片性能 问题定位方法 现象-数据库不能访问 对于此类问题,相对来说比较容易定位。 gpstate检查系統状态,此时很可能不会有任何输出 0 码力 | 41 页 | 1.42 MB | 1 年前3
Greenplum介绍Master介绍 Master服务器是外面用户访问greenplum的入口。用户 都是连接master服务器的,对于外部用户来说,他并不 与segment host服务器发生任何关系,外部用户的网络 只需要与master服务器连通就可以了,不需要访问 segment host服务器。 所有的用户连接都是直接连接到master服务器上的。 Greenplum数据库是基于PostgreSQL数据库的,所以 host上建多个Segment数 据库,数量等于实际的CPU的core数。 Greenplum架构: 内部网络 Segment host与master是通过greenplum的内部网络互 联起来的,外部用户不需要访问这个内部网络的。 Segment 与Segment之间是有网络连接的,所以 Segment之间可以直接交互数据的。 Greenplum默认使用UDP协议,不过我们发现UDP有0 码力 | 38 页 | 655.38 KB | 1 年前3
Greenplum上云与优化2016Postgres中国用户大会 ApsaraDB for GP的定位 ApsaraDB for GP = 简单、高效解决大数据分析需求 MPP + 列存压缩 复杂SQL + 查询优化器 本地高效存储 +高速网络 +预置稳定资源 = = 2016Postgres中国用户大会 GP vs. RDS? Select count(*) from customer group by city Return 2016Postgres中国用户大会 ApsaraDB for GP的定位 ApsaraDB for GP = 简单、高效解决大数据分析需求 MPP + 列存压缩 复杂SQL + 查询优化器 本地高效存储 +高速网络 +预置稳定资源 = = 2016Postgres中国用户大会 ApsaraDB for GP的内核优化 2016Postgres中国用户大会 ApsaraDB for GP架构 ApsaraDB0 码力 | 26 页 | 1.13 MB | 1 年前3
共 14 条
- 1
- 2













